2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Дельта матрица Кронекера. "Неизвестное" свойство
Сообщение07.11.2021, 16:03 


07/11/21
2
Привет. В иностранных статьях, посвященных радиолокации, используется преобразование позволяющее представлять произведение матриц в другом виде.
Например:
1) Пусть существует выражение $\boldsymbol{Y}_1=\boldsymbol{A}\boldsymbol{X}\boldsymbol{B}$,
где $\boldsymbol{A}$ - матрица n на n, $\boldsymbol{B}$ - матрица m на m, $\boldsymbol{X}$ и $\boldsymbol{Y}$ - матрицы n на m.
2) Пусть $\mathit{Z}$ - это вектор-столбец, состоящий из элементов матрицы $\boldsymbol{Z}$, данную процедуру обозначим как: $\mathit{Z}=\boldsymbol{Z}(:)$, тогда
$\mathit{X}=\boldsymbol{X}(:)$,
$\mathit{Y}_1=\boldsymbol{Y}_1(:)$.

3) Существует выражение $\mathit{Y}_2={\boldsymbol{B}}^{\textrm{T}} \otimes \boldsymbol{A}\mathit{X}$

Правило такого, что для любых n и m, верно выражение:
$\mathit{Y}_1 = \mathit{Y}_2  $.

Иностранцы называют такое преобразование "Kronecker delta (D-matrix) format", но она толком не гуглится не на буржуйском, не, тем более, на отечественном языках.

Вопрос:
Есть ли название у такого преобразования или хотя бы какое-то формальное описание/вывод/доказательство? Необходимо ссылаться на него в статьях.

 Профиль  
                  
 
 Re: Дельта матрица Кронекера. "Неизвестное" свойство
Сообщение07.11.2021, 17:24 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora
reincornator в сообщении #1538076 писал(а):
Пусть $\mathit{Z}$ - это вектор-столбец, состоящий из элементов матрицы $\boldsymbol{Z}$
В каком порядке перечисленных?

 Профиль  
                  
 
 Re: Дельта матрица Кронекера. "Неизвестное" свойство
Сообщение07.11.2021, 18:20 
Аватара пользователя


14/12/17
1531
деревня Инет-Кельмында
https://en.m.wikipedia.org/wiki/Kronecker_product : matrix equations
что то похожее, может даже оно. И есть ссылка на источник (Horn & Johnson 1991, Lemma 4.3.1).

-- 07 ноя 2021, 19:44 --

Ну да, в разделе 4.3 книги это и рассматривается.

 Профиль  
                  
 
 Re: Дельта матрица Кронекера. "Неизвестное" свойство
Сообщение07.11.2021, 21:17 


07/11/21
2
eugensk
Спасибо. Вроде смотрел википедию, но видимо плохо.

 Профиль  
                  
 
 Re: Дельта матрица Кронекера. "Неизвестное" свойство
Сообщение08.11.2021, 11:43 
Заслуженный участник


14/10/14
1220
reincornator в сообщении #1538076 писал(а):
Есть ли название у такого преобразования или хотя бы какое-то формальное описание/вывод/доказательство? Необходимо ссылаться на него в статьях.
Это тривиальность, смотрите: $(\mathbf Y_1)_{ij}=\sum\limits_{kl}\mathbf A_{ik}\mathbf X_{kl}\mathbf B_{lj}=\sum\limits_{kl}\mathbf A_{ik}\mathbf B_{lj}\mathbf X_{kl}$; вы можете думать, что $kl$ -- это 2 индекса ($k$ бегает от $1$ до $n$, а $l$ от $1$ до $m$), а можете думать, что это 1 большой индекс, который пробегает $nm$ значений.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 5 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group