мат-ламер, а из обычной ассоциативности следует "произвольность скобок". Я же выше написал, что эти 2 определения эквивалентны. Поэтому все тут с целыми числами нормально доказано я думаю.
Представим ситуацию. Вы читаете новейший учебник по теории групп. Там вводится определение группы с аксиомой "произвольности скобок". Далее предлагается доказать упражнение, что целые числа по сложению - группа. Тут уже не совсем понятно, как проверять эту аксиому. Вы пишете на форум. Там вам советуют взять старый учебник Кострикина по алгебре (первый том). Там, во-первых, группа определяется через ассоциативность. Во-вторых, доказывается, в алгебраической системе с ассоциативностью (допустим, даже, в полугруппе) выполняется свойство "произвольности скобок". Теперь у вас возникает вопрос, а зачем читать этот новый учебник? Зачем нужна аксиома "произвольности скобок"? Ведь всё равно мы должны проверять ассоциативность. А чтобы проверить аксиому "произвольности скобок", приходится прибегать к сторонней к теореме. В итоге имеем, что аксиома ассоциативности и проще и фундаментальней аксиомы "произвольности скобок". И потому математики пришли к выводу, что именно её надо оставить в определении группы.