2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу 1, 2, 3  След.
 
 Диофантово уравнение 2-го порядка
Сообщение23.10.2021, 17:41 


28/03/21
189
Здравствуйте.
Возникла у меня затыка с одним заданием из самостоятельной работы. 14 из 15 решила, а вот это никак не даётся.
Решить в целых уравнение $x^2+4xy+y^2=111$.
Что я делала:
1. Пыталась разложить на множители - не раскладывается.
2. Попробовала выделить полный квадрат. Пришла к каким-то дико-громоздким дробям.
3. Решала данное уравнение как квадратное относительно $x$. Безуспешно.
Но этим и исчерпываются все методы, которые давали на лекциях.
Мне не нужно решение, подскажите идею, как подступиться к этому уравнению.

 Профиль  
                  
 
 Re: Диофантово уравнение 2-го порядка
Сообщение23.10.2021, 17:56 
Заслуженный участник


20/12/10
8858
Gepidium в сообщении #1536062 писал(а):
Мне не нужно решение, подскажите идею, как подступиться к этому уравнению.
Докажите, что решений нет, рассмотрев это уравнение по подходящему модулю. Неужели про этот метод (называется "метод остатков") на лекции ничего не рассказывалось? Этот метод входит в стандартный набор элементарных (для школьников) методов решения диофантовых уравнений.

Стандартный пример. Уравнение $x^2-3y^2=-1$ неразрешимо в целых числах, потому что левая часть уравнения никогда не дает остатка 2 при делении на 3. (Убедитесь, что остаток 2 действительно невозможен для левой части.)

 Профиль  
                  
 
 Re: Диофантово уравнение 2-го порядка
Сообщение23.10.2021, 17:57 
Аватара пользователя


01/11/14
1656
Principality of Galilee
Gepidium в сообщении #1536062 писал(а):
Но этим и исчерпываются все методы, которые давали на лекциях
А прямой перебор не пробовали? Ведь это простейший и самый первый способ решения диофантовых уравнений, который даётся в учебниках. Неужели преподаватель его не упомянул?
Тем более, что здесь прямой перебор совсем небольшой.

 Профиль  
                  
 
 Re: Диофантово уравнение 2-го порядка
Сообщение23.10.2021, 17:59 
Заслуженный участник


20/12/10
8858
Gepidium в сообщении #1536062 писал(а):
2. Попробовала выделить полный квадрат. Пришла к каким-то дико-громоздким дробям.
А вот это не есть гуд: все-таки, выделять полный квадрат надо уметь, это полезная техника. И никаких диких дробей там нет.

-- Сб окт 23, 2021 22:00:36 --

Gagarin1968 в сообщении #1536066 писал(а):
А прямой перебор не пробовали?
Прямой перебор чего? Все целые числа перебрать не удастся.

 Профиль  
                  
 
 Re: Диофантово уравнение 2-го порядка
Сообщение23.10.2021, 18:06 


28/03/21
189
nnosipov в сообщении #1536065 писал(а):
Докажите, что решений нет, рассмотрев это уравнение по подходящему модулю
nnosipov
А как определить, какой модуль подходящий?
Gagarin1968 в сообщении #1536066 писал(а):
здесь прямой перебор совсем небольшой
Gagarin1968
Прямой перебор чего? Всевозможных наборов$(x,y)$?
Или я что-то не догоняю?

 Профиль  
                  
 
 Re: Диофантово уравнение 2-го порядка
Сообщение23.10.2021, 18:11 
Аватара пользователя


01/11/14
1656
Principality of Galilee
Gepidium в сообщении #1536070 писал(а):
Прямой перебор чего?
nnosipov в сообщении #1536067 писал(а):
Прямой перебор чего? Все целые числа перебрать не удастся
Нет, конечно.
Прямой перебор остатков по $\mod 3$, учитывая, что $111=3\cdot 37$.
И рассмотреть всего 9 случаев. Я неправ?

 Профиль  
                  
 
 Re: Диофантово уравнение 2-го порядка
Сообщение23.10.2021, 18:12 
Заслуженный участник
Аватара пользователя


30/01/09
6676
Gepidium в сообщении #1536062 писал(а):
1. Пыталась разложить на множители - не раскладывается.

Всё же можно попытаться разложить, для начала сделав подходящую линейную замену.

То есть привести к виду $uv=a$ .

 Профиль  
                  
 
 Re: Диофантово уравнение 2-го порядка
Сообщение23.10.2021, 18:15 
Заслуженный участник


20/12/10
8858
Gagarin1968 в сообщении #1536072 писал(а):
Я неправ?
По модулю 3 соответствующее сравнение разрешимо, это ничего не даст.

-- Сб окт 23, 2021 22:17:29 --

мат-ламер в сообщении #1536073 писал(а):
Всё же можно попытаться разложить
На множители с иррациональными коэффициентами? А что потом делать? Боюсь, теорию уравнений Пелля пока изучать рановато.

 Профиль  
                  
 
 Re: Диофантово уравнение 2-го порядка
Сообщение23.10.2021, 18:18 
Аватара пользователя


01/11/14
1656
Principality of Galilee
nnosipov в сообщении #1536074 писал(а):
По модулю 3 соответствующее сравнение разрешимо, это ничего не даст.
nnosipov
Я полагаю, что всё-таки неразрешимо, и это даёт всё.

 Профиль  
                  
 
 Re: Диофантово уравнение 2-го порядка
Сообщение23.10.2021, 18:19 
Заслуженный участник


20/12/10
8858
Gepidium в сообщении #1536070 писал(а):
А как определить, какой модуль подходящий?
Да подряд пробовать и надеяться, что повезет. 2 не подходит, 3 тоже. А 4?

-- Сб окт 23, 2021 22:20:53 --

Gagarin1968 в сообщении #1536075 писал(а):
Я полагаю, что всё-таки неразрешимо
Сравнение $x^2+4xy+y^2 \equiv 111 \pmod{3}$ разрешимо.

 Профиль  
                  
 
 Re: Диофантово уравнение 2-го порядка
Сообщение23.10.2021, 18:24 
Аватара пользователя


01/11/14
1656
Principality of Galilee
nnosipov
Я имел в виду полный перебор остатков левой части уравнения по $\mod 3$.

 Профиль  
                  
 
 Re: Диофантово уравнение 2-го порядка
Сообщение23.10.2021, 18:29 
Заслуженный участник


20/12/10
8858
Gagarin1968 в сообщении #1536079 писал(а):
Я имел в виду полный перебор остатков левой части уравнения по $\mod 3$.
Вы, помимо этого, имеете в виду еще что-то. Потому что этот перебор (сам по себе) не приводит к противоречию.

 Профиль  
                  
 
 Re: Диофантово уравнение 2-го порядка
Сообщение23.10.2021, 18:49 
Аватара пользователя


01/11/14
1656
Principality of Galilee
nnosipov в сообщении #1536080 писал(а):
Потому что этот перебор (сам по себе) не приводит к противоречию
nnosipov
Ну как же не приводит, когда приводит. Смотрите сами (не выкладываю своё решение, только рассмотрю первые 3 случая):
1. x \equiv 0\pmod{3}:
а) y \equiv 0\pmod{3}. Тогда x^2+4xy+y^2 делится на 3^2=9, а правая часть - не делится.
б) y \equiv 1\pmod{3}. Тогда x^2+4xy+y^2\equiv 1\pmod{3}, а 111 \not\equiv 1\pmod{3}.
в) y \equiv 2\pmod{3}. Тогда x^2+4xy+y^2\equiv 1\pmod{3}, а 111 \not\equiv 1\pmod{3}.

2.x \equiv 1\pmod{3}:
а)
б)
в)
...................................................
И последние 3 случая (при x \equiv 2\pmod{3}.
И везде получается противоречие.
Я где-то ошибаюсь?

 Профиль  
                  
 
 Re: Диофантово уравнение 2-го порядка
Сообщение23.10.2021, 19:01 
Заслуженный участник


20/12/10
8858
Gagarin1968 в сообщении #1536086 писал(а):
Тогда x^2+4xy+y^2 делится на 3^2=9, а правая часть - не делится.
Вот это и есть то дополнительное, что Вы привлекаете. Фактически это рассуждение по модулю 9. По модулю 9 противоречие есть, а по модулю 3 нет.

Между тем, можно найти такой модуль $m<9$, что сравнение $x^2+4xy+y^2 \equiv 111 \pmod{m}$ будет неразрешимым.

 Профиль  
                  
 
 Re: Диофантово уравнение 2-го порядка
Сообщение23.10.2021, 19:10 
Заслуженный участник
Аватара пользователя


30/01/09
6676
мат-ламер в сообщении #1536073 писал(а):
для начала сделав подходящую линейную замену.

Этим можно чуток уравнение упростить. Полагая $z=x+2y$ , приходим к уравнению $z^2-3y^2=111$ , которое есть следствие исходного. Дальше в этом уравнении делаем подстановку $z=3t$ и приходим к уравнению $3t^2-y^2=37$ . Дальше это уравнение пробуем решать по модулю 3 .

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 34 ]  На страницу 1, 2, 3  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Mikhail_K


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group