Цитата:
mihaild: Pustovoi, пока вы не дадите строгого определения "конечного описания", разговаривать бессмысленно. А как только дадите - к нему (если он будет минимально разумным) можно будет применить диагональный метод
Определение. "Конечным описанием действительного числа" или "дескриптором действительного числа" называется конечный текст, который однозначно описывает это число.
На самом деле дескрипторами мы пользуемся постоянно. Если я вас попрошу написать несколько чисел, имеющих бесконечную десятичную запись, вы мне напишете именно несколько дескрипторов.
Что касается диагонального метода. Множество всех конечных текстов является счетным.
Следовательно, множество всех дескрипторов также счетное.
Следовательно, множество всех конечно описуемых чисел, или F-чисел также является счетным.
Диагональный метод Кантора в данном случае заключается в построении (описании) такого числа, которое не совпадает ни с одним из F-чисел. Если такое число удалось описать конечным текстом, то полученный текст является дескриптором числа, то есть он определяет какое-то F-число. Получается, что этот текст описывает F-число, которое не является F-числом. Вывод: текст некорректный, он не описывает никакое число, не является дескриптором числа.
-- 24.07.2021, 12:43 --Цитата:
epros: ... если под "конечным описанием" понимать алгоритм (ведь код алгоритма конечен), то как раз конструктивизм и получится.
Дескриптор более общее понятие, чем алгоритм. Я ужи приводил пример числа, которое нельзя вычислить с помощью алгоритма. Повторю текст такого дескриптора: "Пусть
- число, целая часть которого равна количеству разбиений плоскости на одинаковые восьмиугольники, а после запятой последовательно выписываются количество разбиений плоскости на одинаковые 9-угольники, одинаковые 10-угольники, одинаковые 11-угольники и т.д."
Количество разбиений на n-угольники - это некоторое натуральное число, вычислить которое с помощью алгоритма невозможно. Для того, чтобы вычислить хотя бы некоторые цифры этого числа, надо построить целую теорию, решить творческие задачи, а не просто организовать перебор.
А основная мысль, до обсуждения которой так и не дошли, это то, что множество всех конечно описуемых чисел является непрерывным и счетным, что ведет к очень интересным последствиям.