Значит рассуждения примерно такие. Может ли быть несчетное кол-во интервалов. Ответ: нет, потому что, не равномощны счетное и несчетное множество. Если бы интервалов было несчетное множество, то не было бы для его счетного рационального числа, а так как в любом итервале есть рациональное число, то и их множество счетно.
Это вы что-то очень странное написали. Кого "его" не было бы, что зачит "для счетного рационального числа" (и вообще "счетное рациональное число"?).
(плюс кажется мы тут ушли в другую задачу, которую неплохо бы явно сформулировать прежде чем обсуждать)