Magnetic Resonance Imaging Physical Principles and Sequence Design Second Edition By Robert W. Brown et. all © 2014 byJohn Wiley & Sons,Inc
Problem 7.4
Цитата:
Consider a

-pulse produced by a left-circular

field lying along

in
the rotating frame. It results in the rotation of the equilibrium magnetization of a
sample into the

direction at

(at which time

). (The magnetization
would subsequently precess such that it remains pointed along the

direction in the rotating frame.)
a) Find the phase angle

in (7.22) corresponding to this initial condition.
b) Find

for the imaging scenario where the

-pulse is produced by

along

(so that the magnetization is rotated into

at

and remains pointed along the

direction in the rotating frame thereafter).
c) Repeat (b) for B1 along

.
d) Repeat (b) for Btransmit along

.
Сигнал получаемы от одного вокселя апроксимируется так:

(space-independent limit)
Динамика вектора намагниченности мне понятна: если прикладывать магнитное поле во вращающей ск (вск), то после применения

вектор будет находится в плоскости

.
Урванение движения в лск (лабороторной ск) имеют вид описанный в формулах (4.25)-(4.27):

Подскажите как подойти к этой задаче?