2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В раздел Пургаторий будут перемещены спорные темы (преимущественно псевдонаучного характера), относительно которых администрация приняла решение о нецелесообразности продолжения дискуссии.
Причинами такого решения могут быть, в частности: безграмотность, бессодержательность или псевдонаучный характер темы, нарушение автором принципов ведения дискуссии, принятых на форуме.
Права на добавление сообщений имеют только Модераторы и Заслуженные участники форума.



Начать новую тему Ответить на тему
 
 теорема Ферма и "магический квадрат".
Сообщение09.03.2021, 14:58 


14/03/20
9
Косвенным подтверждением теоремы Ферма можно считать тот факт, то при "веерном" построение в произвольном квадрате семейства графиков $C^n$, только график $C^2$ имеет $5$ свойств,присущих только ему.
Справочно:
"Веерное" построение в произвольном квадрате семейства графиков $C^n$ - последовательное построение фундаментальных графиков вида $C^n$ для целочисленных значений $C$ с помощь линейки и циркуля, при котором по оси $X$ плотность единицы составляет C^{n-1} $.
Вид графиков и их свойства не изменяются при при любом значении $C$ по оси $X$ в одном и том же произвольном квадрате.


Есть свойство, которое присуще всем графикам $C^n$ - это величина "отклонения"- $ D$ от диагонали "квадрата" в конкретной точке графика, а именно

$D= X( Z^{n-1} - X^{n-1})$

Т.Е. для $n=3$

$D= X(Z^2 - X^2)$


Учитывая, что $X+Y=Z+K$, а также, что
$(A+K)^3 + (Z-A)^3 = Z^3$ ,где $  A, Z, K$ должны быть целые числа и $(A+K)=X$, $(Z-A)=Y$

то должно выполнятся следующее условие:

$ X( Z^2 - X^2) +  Y( Z^2 - Y^2) = Z^2 K$

При $n>2$ график "отклонений" не симметричен, но должна существовать точка $a$ с таким же "отклонением"$ D$ к которой прибавляется $ K $ и это значение $a$ должно быть целым числом.

т.е. $ X( Z^2 - X^2) =  a( Z^2 - a^2) $

после преобразования данного равенства получаем

$ Z^2=( X^3 - a^3 )/(X-a) $


при преобразовании правой части видно, что данное выражение не имеет целочисленных решений . т.е. из $Z ,X, a$ - одно из чисел дробное.

таким образом
$X+Y=Z+K $ при $ n=3$ одно из чисел дробное, что противоречит условию.
Таким образом $X^3 + Y^3 = Z^3$ , не имеет решений при целочисленных $  X, Y, Z $.

Теперь для $ n> 2$.

Свойство, всех графикам $c^n$ - что величина "отклонения"- $ D$ от диагонали "квадрата" в конкретной точке графика составляет

$D= X( Z^{n-1} - X^{n-1})$,
но применяя рассуждения как и при $ n= 3$ , т.е. не существует $a$ при котором выражение

$ Z^{n-1}=( X^n - a^n )/(X-a) $ имеет целочисленное решение.


таким образом $X^n + Y^n = Z^n$ , не имеет решения в целых числах $  X, Y, Z $ при $n>2$

 Профиль  
                  
 
 Re: теорема Ферма и "магический квадрат".
Сообщение09.03.2021, 15:09 


20/03/14
12041
Если Вы приводите доказательство, по правилам раздела, приведите его (одно) сперва для случая $n=3$, не отвлекаясь на косвенные соображения.

 Профиль  
                  
 
 Posted automatically
Сообщение09.03.2021, 15:10 


20/03/14
12041
 i  Тема перемещена из форума «Великая теорема Ферма» в форум «Карантин»
по следующим причинам:

См. выше.

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 Профиль  
                  
 
 Posted automatically
Сообщение11.03.2021, 02:21 


20/03/14
12041
 i  Тема перемещена из форума «Карантин» в форум «Великая теорема Ферма»


-- 11.03.2021, 04:26 --

chicot в сообщении #1508479 писал(а):
семейства графиков $C^n$

Это не график, график так не задается.
chicot в сообщении #1508479 писал(а):
последовательное построение фундаментальных графиков вида $C^n$ для целочисленных значений $C$ с помощь линейки и циркуля, при котором по оси $X$ плотность единицы составляет C^{n-1} $.

Переведите на русский, пожалуйста. Особенно интересно, причем тут циркуль и линейка и что такое плотность единицы по оси.
chicot в сообщении #1508479 писал(а):
Есть свойство, которое присуще всем графикам $C^n$ - это величина "отклонения"- $ D$ от диагонали "квадрата" в конкретной точке графика, а именно

$D= X( Z^{n-1} - X^{n-1})$

Это отклонение измерено в какой точке графика? И что означает $Z$?
Ну и так далее.
Пишите аккуратно, пожалуйста, текст нечитабелен.
Вводите обозначение - поясняйте.

 Профиль  
                  
 
 Re: теорема Ферма и "магический квадрат".
Сообщение11.03.2021, 12:17 


14/03/20
9
Метод построение семейства фундаментальных графиков вида $f(x)= x^2$, $f(x)= x^3$ $f(x)= x^4$ и т.д. в одном произвольном квадрате - это что-то вроде ноу хао в математике и может заслуживать отдельной темы.
И так:

1.1 - строится произвольный квадрат (чем больше тем точнее графики).
1.2. - $Z$ - выбранное целочисленное значение , на которое делится нижняя грань квадрата (т.е. по оси $X$), это и будут числа $ 1,2,3  ....  Z$
1.3. -левая грань квадрата (т.е по оси $Y$) сначала делится на $Z^2$
1.4. - каждая единица по оси $X$ также делится на $Z$ -это и есть "плотность единицы", для $f(x)= x^3$ единицы делятся на $Z^2 $, а левая сторона квадрата на $Z^3$.
Таким образом место положение чисел $1,2,3 .... $Z$ на оси $X$остается не измененным, а меняется их "плотность" с увеличением степени.

Для понимания результата на примере $f(x)= x^2$ , где $x=1,2,3

Произвольный квадрат , нижняя грань делится на $3$, левая на $9$, строится график.

Если в этом же квадрате построить график для любого другого целого числа с учетом вышеуказанных пунктов, то вид кривой останется неизменным.
Это свойство присуще всем графикам $f(x)= x^n$.

Теперь отклонение $D$.

1.Каждой точки на нижней грани квадрата (если провести перпендикуляр ) соответствует точка на диагонали (из начала) координат) квадрата, в частном случае для
$f(x)= x^2$ , $Z =3$ ,$x =2$

$D =2\cdot3 - 2^2$ т.е. $D =2$

если $f(x)= x^2$ , $Z =7$ ,$x =5$

для $x =5$ $D =5\cdot7 - 5^2$ $D =10$
для $x =4$ $D =4\cdot7 - 4^2$ $D =12$

теперь если $f(x)= x^3 $ , $C =7$

для $x =5$ $D =5\cdot7^2 - 5^3$ $D =120$
для $x =4$ $D =4\cdot7^2 - 4^3$ $D =132$


т.е. $D =x\cdot( Z^{n-1} ) - x^n$
или в общем виде $D =x\cdot(  Z^{n-1} - x^{n-1})$

Стоит отметить , что если строить графики $f(x)= x^2$, $f(x)= x^3$ для одного числа $Z  $ то график $f(x)= x^3$ будет под графиком $f(x)= x^2$

В конечном счете все семейство графиков $f(x)= x^n$ для фиксированного числа в одном квадрате, будут иметь напоминать поведение графиков $f(x)= x^n$ в диапазоне от 0 до 1 при общепринятому построению этих графиков.

Веерное построение линейкой и циркулем график $f(x)= x^2$ и для последующих $ n$:

1.Произвольный квадрат( чем больше тем лучше)
2. по оси$X$ от начала координат циркулем откладывается любой отрезок, получаем точку $ A$
3. на левой грани квадрата от оси $X$ откладывается точно такой же отрезок, точка $ B$ , и полученная точка соединяется с началом координат (т.е. левым нижним углом квадрата), прямая $ L$
4. из точки $ B$ строим перпендикуляр до пересечения с прямой $ L$ получаем точку $Q$
5. точка пересечения $Q$ принадлежит графику $f(x)= x^2$
6. чем больше точек тем плавнее график.(а также график "отклонений", при $f(x)= x^2$ он симметричен относительно середины нижней грани).

График $f(x)= x^3$ строится на основе $f(x)= x^2$, $f(x)= x^4$ на основе $f(x)= x^3$ и т.д. с той лишь разницей, что точка $B$ на левой гране квадрата соответствует точке $Q$ предыдущего графика.


Теперь квадрат можно разметить по методу 1.1. -1.4. для любого целого числа $Z$, вид графиков и их свойства не изменятся.

 Профиль  
                  
 
 Re: теорема Ферма и "магический квадрат".
Сообщение13.03.2021, 13:33 


14/03/20
9
В продолжении темы:
Если Вы не поленились и взяли в руки лист бумаги, линейку,карандаш и построили хотя бы два графика $f(x)= x^2$, $f(x)= x^3$ , например для числа $Z=10$, ..... кстати диагональ квадрата это график $f(x)= x$, и проверили , что :

1.
"отклонение" $D$, от диагонали для каждого целого числа графика $f(x)= x^2$ будет

$ x = 1 $ $D =1\cdot10 - 1^1$ т.е. $D =9$
$ x = 2 $ $D =2\cdot10 - 2^2$ т.е. $D =16$
$ x = 3 $ $D =3\cdot10 - 3^2$ т.е. $D =21$
$ x = 4 $ $D =4\cdot10 - 4^2$ т.е. $D =24$
$ x = 5 $ $D =5\cdot10 - 5^2$ т.е. $D =25$
$ x = 6 $ $D =6\cdot10 - 6^2$ т.е. $D =24$
$ x = 7 $ $D =7\cdot10 - 7^2$ т.е. $D =21$
$ x = 8 $ $D =8\cdot10 - 8^2$ т.е. $D =16$
$ x = 9 $ $D =9\cdot10 - 9^2$ т.е. $D =9$

можно построить график $f(x)=D, где $D = x(Z-x)$, т.е. $f(x)= x(Z-x),

видна симметричность графика $f(x)= x(Z-x), относительно $ \frac { Z}{2}  $,

2

"отклонение" $D$ от диагонали для каждого целого числа графика $f(x)= x^3$ будет

$ x = 1 $ $D =1\cdot10^2 - 1^3$ т.е. $D =99$
$ x = 2 $ $D =2\cdot10^2 - 2^3$ т.е. $D =191$
$ x = 3 $ $D =3\cdot10^2 - 3^3$ т.е. $D =273$
$ x = 4 $ $D =4\cdot10^2 - 4^3$ т.е. $D =336$
$ x = 5 $ $D =5\cdot10^2 - 5^3$ т.е. $D =275$
$ x = 6 $ $D =6\cdot10^2 - 6^3$ т.е. $D =384$
$ x = 7 $ $D =7\cdot10^2 - 7^3$ т.е. $D =357$
$ x = 8 $ $D =8\cdot10^2 - 8^3$ т.е. $D =288$
$ x = 9 $ $D =9\cdot10^2 - 9^3$ т.е. $D =171$

видно,уже график $f(x)= x(Z^2-x^2), относительно $\frac { Z}{2} $ не симметричен.

3.
Из графиков водно.

для $f(x)= x^2$ в выражении $X^2 + Y^2 = Z^2$

$0\le X \le Z\frac {\sqrt 2}{ 2} $

$ Z\frac {\sqrt 2}{ 2}\le Y \le Z$


для $f(x)= x^3$ в выражении $X^3 + Y^3 = Z^3$

$0\le X \le Z\frac {\sqrt[3] 4}{ 2} $

$ Z\frac {\sqrt [3]4}{ 2}\le Y \le Z$

в общем виде для $X^n + Y^n = Z^n$

$0\le X \le Z\frac {\sqrt[n]2^{n-1}}{ 2} $

$ Z\frac {\sqrt[n]2^{n-1}}{ 2}\le Y \le Z$


Вернемся к $X^3 + Y^3 = Z^3$

если $X, Y, Z $ целые числа ,то

$(X+ Y)<Z\frac {\sqrt[3] 4}{ 2} $ или $(X+ Y)=(Z +K) $, где $K$ так же должно быть целым числом.

Из всего выше изложенного можно сформулировать следующее:

Если существуют такие целые числа $X, Y, Z $ при которых выполняется выражение $X^3 + Y^3 = Z^3$, то существует такое целочисленное число $ a $ для которого выполняется условие $ Z^2=\frac {(X^3 - a^3)} {(X-a)} $,
при преобразовании правой части уравнения, полученное выражение не может быть представлено целочисленным $Z$, т.е. $X^3 + Y^3 = Z^3$ не имеет решений в целых числах.


Как видно- графики $f(x)= x(Z^{n-1}-x^{n-1})$, относительно $\frac { Z}{2} $ не симметричны при $n>2$ и как следствие $ Z^{n-1}=\frac {(X^n - a^n)} {(X-a)} $ не имеет целочисленных решений
то

Для любого натурального $n > 2$ уравнение $a^n+b^n=c^n$ не имеет натуральных решений $a, b ,c $

 Профиль  
                  
 
 Re: теорема Ферма и "магический квадрат".
Сообщение14.05.2024, 16:05 


08/05/24

1
Последнее утверждение ошибочно и не является доказательством теоремы, но все же доказывает одно из уникальных свойств графика при n=2.
Метод построения степенных графиков уникален и кажется в математике до этого поста был неизвестен, можно сказать это -открытие, которое снобы математики умолчали, потому что задело их самолюбие.
Наличие восьми уникальных свойств графика при n=2, дает косвенное подтверждение, что все же теорема Ферма верна и имеет более менее простое доказательство, отличное от доказательства Эндрю Уайлсом, основанное опять таки на ГИПОТЕЗЕ Таниямы–Шимуры–Вейля, которая во времена Ферма вряд ли была известна…

 Профиль  
                  
 
 Posted automatically
Сообщение14.05.2024, 19:20 
Админ форума


02/02/19
3038
 i  Тема перемещена из форума «Великая теорема Ферма» в форум «Пургаторий (М)»
Причина переноса: открытие, о котором снобы-математики умолчали.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 8 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group