Законы сохранения формулируются для замкнутых систем
Да.
но ведь однородность/изотропность пространства не должна зависеть от системы
Да.
или же то, что используется лагранжиан уже подразумевает замкнутость?
Нет, бывают и незамкнутые системы, описывающиеся лагранжианом.
Наличие сохраняющихся величин связано не с самими симметриями пространства, а с тем, что конкретная система инвариантна относительно этих симметрий в следующем смысле.
1) Зададим какие-то начальные условия и запустим эволюцию системы.
2) Зададим начальные условия, отличающиеся от предыдущих на симметрию, запустим эволюцию системы и применим обратную симметрию.
В итоге всегда должно получаться одно и то же. Не любая система обладает таким свойством.
Строгую математическую формулировку можно найти, как советуют выше, у Арнольда либо, в чуть более общем виде, у Гельфанда-Фомина (лучше всего брать 2-е английское издание).
(Бывают и сохраняющиеся величины, которые не связаны с симметриями пространства.)
И нарушают ли однородность времени массивные объект и вообще всякие релятивистские штучки
Да, в общей теории относительности однородность времени не имеет места, и с сохранением энергии там сложно.