2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Сферические оболочки в сильном магнитном поле
Сообщение05.02.2021, 16:30 
Аватара пользователя


12/02/20
282
Две сферические оболочки радиуса $R$ сделаны из меди и соединены медным стержнем длины $L$ и радиуса $r$. Полная масса этой системы равна $m$. Вся конструкция помещена в очень сильное магнитное поле индукции $B$, перпендикулярно стержню. Конструкции придают начальную малую скорость $u$ параллельно направлению стержня. Такое положение системы неустойчиво: начнутся колебания которые затухнут, и система примет положение устойчивого равновесия и новую скорость $v$. Найдите эту скорость.

 Профиль  
                  
 
 Re: Сферические оболочки в сильном магнитном поле
Сообщение07.02.2021, 15:39 
Заслуженный участник


20/04/10
1932
Если $L\gg R\gg r$, тогда $v=\frac{m u}{m+B^2 L^2 C}.$ Здесь $C$ это ёмкость двух сфер. Это ответ для упрощённой модели, в которой не учитывается распределение заряда на сферах, а также распределение заряда в стержне.

 Профиль  
                  
 
 Re: Сферические оболочки в сильном магнитном поле
Сообщение10.02.2021, 10:35 
Заслуженный участник


21/09/15
998
Не пришло ли время немного обсудить задачу? Я согласен с ответом lel0lel , и мне интересно этого ли ожидал profilescit или чего-то совершенно иного.
Я вижу три этапа решения. Думаю, что lel0lel решал именно так.
Во-первых, качественный анализ показывает, что устойчивым положением является ситуация, когда гантелька будет перпендикулярна направлению скорости, при этом как скорость, так и продольная ось гантельки остаются в плоскости перпендилулярной магнитному полю.
Во-вторых, уравнения движения приводят к формуле $m(\mathbf{v}-\mathbf{u})=[\mathbf{P }\mathbf{B}]$, где $\mathbf{P}$ - дипольный момент наведенный полем $\mathbf{E}=[\mathbf{vB}]$ в системе отсчета гантельки.
В-третьих, и здесь релевантны упрощения, о которых говорил lel0lel - $\mathbf{P}=\mathbf{E}L^2C$, причем, добавлю $C=2\pi \varepsilon_0 R$. Уточнение $C$ требует большой работы.
Меня смущают оговорки в условии "очень сильное магнитное поле" и "начальную малую скорость". И, с другой стороны, если подставить разумные цифры, эффект настолько мал, что не наблюдаем

 Профиль  
                  
 
 Re: Сферические оболочки в сильном магнитном поле
Сообщение11.02.2021, 22:37 
Аватара пользователя


12/02/20
282
AnatolyBa

Ответы сходятся. Решил ее выставить так как довольно мало нашел задач с применением векторного потенциала и сохранением канонического импульса на относительно школьно-олимпиадном уровне.
Скорее всего сильное магнитное поле нужно для того чтобы нельзя было тривиально написать $u = v$, а малая начальная скорость для того чтобы пренебрегать релятивизмом.

 Профиль  
                  
 
 Re: Сферические оболочки в сильном магнитном поле
Сообщение14.02.2021, 13:52 


21/07/20
248
AnatolyBa
У меня так просто не получилось. Результирующая сила:
$\vec{F}=\frac{dq}{dt}[\vec{L}\vec{B}]\ne[\frac{d\vec{P}}{dt}\vec{B}]$,
поскольку $\vec{L}\ne \operatorname{const}$

 Профиль  
                  
 
 Re: Сферические оболочки в сильном магнитном поле
Сообщение14.02.2021, 20:02 
Заслуженный участник


21/09/15
998
profilescit решал через сохранение обобщенного импульса, это более интересно.
А я проще. Каждый заряд внутри тела $q_i$ получает за все время от силы Лоренца импульс $q_i \int\limits_{}^{}[\mathbf{vB}]=q_i[\Delta \mathbf{r_i B}]$.
Плюс всевозможные толчки от соседей, которые скомпенсируются при суммировании по всем частицам.
Т. е. при суммировании импульс полученный телом от силы Лоренца будет $\sum\limits_{}^{}q_i[\Delta \mathbf{r_i B}]=[\Delta \mathbf{P B}]$

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 6 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: dovlato


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group