2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Обобщенный интеграл
Сообщение03.12.2020, 00:10 
Аватара пользователя
Как называется интеграл вида $\int_{R} 1 \mu(dx)=1$ со всеми свойствами интеграла (линейность, инвариантность относительно сдвига и т.д.)?

 
 
 
 Re: Обобщенный интеграл
Сообщение03.12.2020, 04:31 
Интеграл Sicker-а, не иначе. :-)
Как тут будет выглядеть линейность и инвариантность отн-но сдвига? Определите, пожалуйста.

 
 
 
 Re: Обобщенный интеграл
Сообщение03.12.2020, 22:21 
Аватара пользователя
Otta в сообщении #1494973 писал(а):
Как тут будет выглядеть линейность и инвариантность отн-но сдвига? Определите, пожалуйста.

Как обычно $\int_{R} (f+g) \mu(x)=\int_{R} f \mu(x)+\int_{R} g \mu(x)$
$\int_{R} f(x+a) \mu(x)=\int_{R} f(x) \mu(x)$
Я этот интеграл видел при введении в p-адический анализ, там он еще назывался мерой Хаара

 
 
 
 Re: Обобщенный интеграл
Сообщение04.12.2020, 00:42 
Аватара пользователя

(Оффтоп)

Sicker в сообщении #1494950 писал(а):
Как называется интеграл вида $\int_{R} 1 \mu(dx)=1$ со всеми свойствами интеграла

Следующее сообщение того же персонажа:
Sicker в сообщении #1495148 писал(а):
Я этот интеграл видел при введении в p-адический анализ, там он еще назывался мерой Хаара

Выходит, тс нас экзаменует, прекрасно зная, как называется этот интеграл?
Однако...

 
 
 
 Re: Обобщенный интеграл
Сообщение04.12.2020, 01:56 
Sicker в сообщении #1495148 писал(а):
Как обычно $\int_{R} (f+g) \mu(x)=\int_{R} f \mu(x)+\int_{R} g \mu(x)$

Это все прекрасно, но в Вашем интеграле в стартовом посте подынтегральная функция фиксирована. Тождественная единица.

Мера Хаара... ну да, отдаленно напоминает. Настолько отдаленно, что даже не напоминает. Почитайте там еще раз.

 
 
 
 Re: Обобщенный интеграл
Сообщение04.12.2020, 02:43 
Аватара пользователя
Otta в сообщении #1495189 писал(а):
но в Вашем интеграле в стартовом посте подынтегральная функция фиксирована. Тождественная единица.

Так это частное значение, из которого можно получить все остальные

 
 
 
 Re: Обобщенный интеграл
Сообщение04.12.2020, 02:45 
Sicker в сообщении #1495194 писал(а):
Так это частное значение, из которого можно получить все остальные

Продемонстрируйте, пож-ста.
И линейность заодно проверьте. Можно в обратном порядке.

 
 
 
 Re: Обобщенный интеграл
Сообщение04.12.2020, 06:46 
Аватара пользователя
Otta в сообщении #1495195 писал(а):
Продемонстрируйте, пож-ста.
И линейность заодно проверьте. Можно в обратном порядке.

А зачем проверять линейность? Она задана по условию
Пусть $f(x)=1$ при $x \in [2n-1;2n]$ и $f(x)=0$ в противном случае, тогда
$\int_{R} f(x) \mu dx +\int_{R} f(x+1) \mu dx=\int_{R} 1 \mu dx=1$
$\int_{R} f(x) \mu dx=\frac{1}{2}$

 
 
 
 Re: Обобщенный интеграл
Сообщение04.12.2020, 09:23 
Sicker в сообщении #1494950 писал(а):
$\int_{R} 1 \mu(dx)=1$

Вот тут один - это везде один. На всей прямой. В отличие от там.
Мера не задана ни тут, ни там.

 
 
 
 Re: Обобщенный интеграл
Сообщение04.12.2020, 21:20 
Аватара пользователя
Otta
Ну да, везде. А зачем нам мера? Мы может взять любой интеграл исходя из этого частного случая, даже можно общую формулу написать :-)

 
 
 
 Re: Обобщенный интеграл
Сообщение04.12.2020, 21:25 

(Оффтоп)

Я один не понимаю этот диалог? Причем с самого начала. Sicker, Вы вообще чего хотите?

 
 
 
 Re: Обобщенный интеграл
Сообщение04.12.2020, 23:16 
Аватара пользователя
Нужен линейный функционал на пространстве каких-то (каких?) функций, инвариантный по сдвигу, и равный $1$ на функции $f(x) = 1$, так? Еще какие-то условия есть?

 
 
 
 Re: Обобщенный интеграл
Сообщение04.12.2020, 23:57 
Аватара пользователя
mihaild в сообщении #1495360 писал(а):
Нужен линейный функционал на пространстве каких-то (каких?) функций, инвариантный по сдвигу, и равный $1$ на функции $f(x) = 1$, так? Еще какие-то условия есть?

Да, все так :-)

 
 
 
 Re: Обобщенный интеграл
Сообщение05.12.2020, 00:06 
Sicker
Что - так? Еще условия есть? Пишите. А то поедем мы в известном направлении.

 
 
 
 Re: Обобщенный интеграл
Сообщение05.12.2020, 19:05 
Аватара пользователя
Lia в сообщении #1495366 писал(а):
Что - так? Еще условия есть? Пишите.

Конечно нет, mihaild все задал :-)
В общем случае этот интеграл можно расписать вот так $\int_{R} f \mu dx=\lim_{N \rightarrow \infty} \frac{1}{N}  \int_{-\frac{N}{2}}^{+\frac{N}{2}} f  dx$

 
 
 [ Сообщений: 20 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group