2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Гипотеза Била для уравнения $x^p=y^4-z^4$
Сообщение04.11.2020, 14:25 


19/04/14
321
В предыдущей теме было рассмотрено уравнение Била $x^p=y^4+z^4=(y^2+z^2i)(y^2-z^2i)\qquad (1)$.
Для доква было использовано утверждение, что неопределённое уравнение
$x^p=y^2+z^2 \qquad$(2)
имеет бесчисленное множество решений в целых числах для всех натуральных $p$. Решение определяется любой парой целых чисел $m,n$.( разделением действительной и мнимой частей из слагаемых биномов $(m+ni)^p; (m-ni)^p$). Например для $p=3$ :

$x_1=(m+ni)(m-ni)=m^2+n^2 \qquad (3)$;
$y_1=m^3-3mn^2; \qquad (4)$
$z_1=3m^2n-n^3 \qquad (5)$

Было показано, что неопределённое уравнение $x^p=y^2+z^2i$ не может иметь решения в целых числах, так как в правой части один квадрат, а именно $z^2i$ мнимый.
Дополнительную ясность по этому вопросу внесёт рассмотрение еще одного частного неопределенного уравнения Била:
$x^p=y^4-z^4=(y^2-z^2)(y^2+z^2)\qquad (6)$.

Для этого рассмотрим сначала неопределённое уравнение
$x^p=y^2-z^2 \qquad$(7),
имеющее также как и уравнение (2), бесчисленное множество решений. Действительно, пусть $x_1=m^2-n^2$.
Тогда

$(m-n)^p=\Sigma S_1-\Sigma S_2 \qquad (8)$,

где соответственно $\Sigma S_1$ и $\Sigma S_2$ суммы положительных и отрицательных слагаемых разложения бинома Ньютона $(m-n)^p$.
Тогда, не меняя группировки слагаемых, можем записать:

$(m+n)^p=\Sigma S_1+\Sigma S_2 \qquad (9)$.

Перемножив соответственно правые и леые части (8), (9) получим:

$(m^2-n^2)^p=(\Sigma S_1)^2-(\Sigma S_2)^2 \qquad (10)$

Обозначив $y_1=\Sigma S_1; \qquad z_1=\Sigma S_2$, получим равенство

$x_1^p=y_1^2-z_1^2 \qquad (11)$

Например для куба:
$x_1=m^2-n^2 \qquad (12;)$

$y_1= m^3+3mn^2 \qquad (13);$

$z_1=3m^2n+n^3 \qquad (14)$

Сравнивая (3),(4),(5), и (12),(13),(14), приходим к выводу, что уравнение (6) имеет разные решения для одних и тех же величин $y_1, z_1$ в одном и том же равенстве, которое должно определяться одной произвольной парой чисел $m,n$.

$x_1^p=y_1^4-z_1^4=(y_1^2-z_1^2)(y_1^2+z_1^2)\qquad (15)$.

В скобках в правой части (15) разные решения. В первых скобках решение определяется формулами (12), (13),(14), а во вторых формулами (3),(4),(5). Это противоречие. Следовательно, гипотеза Била доказана не только для рассматриваемого частного случая, но и для уравнения (1). Если бы имелось решения для неизвестных $y,\quad z$ то они были бы разными для выражений в скобках правой части (1)

 Профиль  
                  
 
 Re: Гипотеза Била для уравнения $x^p=y^4-z^4$
Сообщение05.11.2020, 08:31 
Заслуженный участник
Аватара пользователя


18/12/07
762
binki в сообщении #1490662 писал(а):
Было показано, что неопределённое уравнение $x^p=y^2+z^2i$ не может иметь решения в целых числах

Ничего не было ни показано, ни доказано. Было 13 страниц чего-то бесформенного, но только не доказательства. Посему рекомендую убрать это вступление, как абсолютно ложное и вводящее в заблуждение читателей.

 Профиль  
                  
 
 Re: Гипотеза Била для уравнения $x^p=y^4-z^4$
Сообщение05.11.2020, 09:49 
Заслуженный участник


20/12/10
8858
Коровьев в сообщении #1490754 писал(а):
Ничего не было ни показано, ни доказано. Было 13 страниц чего-то бесформенного, но только не доказательства.
Полностью согласен. Пытался прочитать текст ТС в этой теме (он короткий), но безуспешно: даже не смог понять, какое именно утверждение доказывается.

 Профиль  
                  
 
 Re: Гипотеза Била для уравнения $x^p=y^4-z^4$
Сообщение06.11.2020, 11:44 


19/04/14
321
Учитывая советы уважаемых заслуженных участников Коровьев и nnosipov разделим задачи и дадим более подробные рассуждения по полученным выводам.
Частное уравнение по гипотезе Била

$x^p=u^pv^p=y^4-z^4=(y^2-z^2)(y^2+z^2) \qquad (1)$

не имеет решения в взаимно простых целых числах при натуральном показателе $P>2$.
Заметим, что составное число $x$ нечетно, так как один из его множителей не может быть числом вида $4k+2$, чему равно было бы выражение $(y^2+z^2)$ при нечетных $y,z$. Кроме того выражения $(y^2-z^2)$ и $(y^2+z^2) $ не могут одновременно делиться на одно и то же нечетное число. Они взаимно просты и поэтому не важно какое из неизвестных $x,y,z$ может делиться на $p$.
Рассмотрим следующие уравнения:

$u^p=y^2-z^2=(y-z)(y+z) \qquad (2)$

$v^p=y^2+z^2=(y+zi)(y-zi) \qquad (3)$

Оба уравнения имеют решения в целых числах. Для равенства по уравнению (2)

$u_1^pu_2^p=(y-z)(y+z)\qquad (4)$

Cоставим выражения

$$m=\frac {u_1+u_2}{2}; \qquad n=\frac {u_1-u_2}{2}$$ Откуда

$m+n=u_1; \qquad m-n=u_2$ Тогда

$(m-n)^p=\Sigma S_1-\Sigma S_2 \qquad (5)$,

где соответственно $\Sigma S_1$ и $\Sigma S_2$ суммы положительных и отрицательных слагаемых разложения бинома Ньютона $(m-n)^p$.
Тогда, не меняя группировки слагаемых, можем записать:

$(m+n)^p=\Sigma S_1+\Sigma S_2 \qquad (6)$.

Перемножив соответственно правые и левые части (5), (6) получим:

$(m^2-n^2)^p=(\Sigma S_1)^2-(\Sigma S_2)^2 \qquad (7)$

Обозначим:

$x_1=m^2-n^2; \quad y_1=\Sigma S_1; \quad z_1=\Sigma S_2 \qquad (8)$, получим равенство

$x_1^p=y_1^2-z_1^2 \qquad (9)$

Например для $p=3$:

$(m-n)^3=(m^3+3mn^2)-(3m^2+n^3) \qquad (10)$

$(m+n)^3=(m^3+3mn^2)+(3m^2+n^3) \qquad (11)$

Перемножив правые и левые части (10), (11), получим:

$(m^2-n^2)^3=(m^3+3mn^2)^2-(3m^2+n^3)^2 \qquad (12)$

$x_1=m^2-n^2; \qquad (13)$

$y_1= m^3+3mn^2; \qquad (14)$

$z_1=3m^2n+n^3; \qquad (15)$

$x^3_1=y_1^2-z^2_1\qquad (16)$

Аналогичные действия выполним и для уравнения (3). Учтем свойства гауссовых чисел, что для того, чтобы уравнение (3) решалось в целых числах $v$ должно равняться сумме двух квадратов. Пусть

$v=(m^2+n^2)=(m+ni)(m-ni)$

$(m+ni)^p=\Sigma S_3+\Sigma S_4\cdot i \qquad (17)$,

где соответственно $\Sigma S_3$ и $\Sigma S_4\cdot i$ суммы действительных и мнимых слагаемых разложения бинома Ньютона $(m+ni)^p$. Тогда, не меняя группировки слагаемых, можем записать:

$(m-ni)^p=\Sigma S_3-\Sigma S_4\cdot i \qquad (18)$,
Перемножив соответственно правые и левые части (17), (18), получим


$(m^2+n^2)^p=(\Sigma S_3)^2+(\Sigma S_4)^2 \qquad (19)$,
Обозначим:
$x_2=m^2+n^2 \qquad (20)$

$y_2=(\Sigma S_3) \qquad (21)$

$z_2=(\Sigma S_4) \qquad (22)$

$x^p_2=y^2_2+z^2_2 \qquad (23)$

Для $p=3$

$(m+ni)^3=(m^3-3mn^2)+(3m^2n-n^3)i \qquad (24)$

$(m-ni)^3=(m^3-3mn^2)-(3m^2n-n^3)i \qquad (25)$

Перемножив правые и левые части (24), (25), получим:

$(m^2+n^2)^3=(m^3-3mn^2)^2+(3m^2n-n^3)^2 \qquad (26)$

$x_2=m^2+n^2; \qquad (27)$

$y_2= m^3-3mn^2; \qquad (28)$

$z_2=3m^2n-n^3; \qquad (29)$

$x^3_2=y_2^2+z^2_2\qquad (30)$

Для всех показателей аналогично как и для $p=3$ решения (13),(14),(15), и (27),(28),(29) разные. Следовательно, уравнение (1) имеет разные решения для одних и тех же величин $y_0, z_0$ в одном и том же равенстве, которое должно определяться одной произвольной парой чисел $m,n$.

$x_0^p=y_0^4-z_0^4=(y_0^2-z_0^2)(y_0^2+z_0^2)=(y_1^2-z_1^2)(y_2^2+z_2^2)\qquad (31)$.

Это противоречие. Следовательно, гипотеза Била доказана для уравнения $x^p=y^4-z_4$

 Профиль  
                  
 
 Re: Гипотеза Била для уравнения $x^p=y^4-z^4$
Сообщение06.11.2020, 12:13 
Заслуженный участник


20/12/10
8858
binki в сообщении #1490883 писал(а):
Частное уравнение по гипотезе Била

$x^p=u^pv^p=y^4-z^4=(y^2-z^2)(y^2+z^2) \qquad (1)$

не имеет решения в взаимно простых целых числах при натуральном показателе $P>2$.
Имеет: $x=0$, $y=z=1$. Давайте для начала сформулируем корректное утверждение.

 Профиль  
                  
 
 Re: Гипотеза Била для уравнения $x^p=y^4-z^4$
Сообщение06.11.2020, 12:36 
Заслуженный участник


12/08/10
1623
binki в сообщении #1490883 писал(а):
так как один из его множителей не может быть числом вида $4k+2$
Почему?

 Профиль  
                  
 
 Re: Гипотеза Била для уравнения $x^p=y^4-z^4$
Сообщение07.11.2020, 12:31 


26/08/11
2066
Перестаньте плодить все новые и новые переменные, сами себя запутываете.
binki в сообщении #1490883 писал(а):
Обозначим:

$x_1=m^2-n^2; \quad y_1=\Sigma S_1; \quad z_1=\Sigma S_2 \qquad (8)$
Зачем $x_1$??? У вас же есть раньше замена
binki в сообщении #1490883 писал(а):
Cоставим выражения
$$m=\frac {u_1+u_2}{2}; \qquad n=\frac {u_1-u_2}{2}$$
Откуда $m^2-n^2=u_1u_2$ Ну и т.k. раньше было
binki в сообщении #1490883 писал(а):
Оба уравнения имеют решения в целых числах. Для равенства по уравнению (2)

$u_1^pu_2^p=(y-z)(y+z)\qquad (4)$
Получатся $x_1=u_1u_2=u$ в ваших же обозначениях. Пришли туда, откуда пошли, только с новыми буквами. Так не получится. Если доказываете спуском (хотя не уверен, что понимаю главную идею написанного), то докажите, что должно существовать $x_1<x$ являющееся решением подобного уравнения.

 Профиль  
                  
 
 Re: Гипотеза Била для уравнения $x^p=y^4-z^4$
Сообщение07.11.2020, 17:58 
Заслуженный участник


12/08/10
1623

(Оффтоп)

Shadow в сообщении #1491046 писал(а):
Если доказываете спуском (хотя не уверен, что понимаю главную идею написанного),
Тут используется единственность разложения на множители в кольце $\mathbb{Z}[e],e^2=1$. Ага :facepalm:

 Профиль  
                  
 
 Re: Гипотеза Била для уравнения $x^p=y^4-z^4$
Сообщение09.11.2020, 13:38 


19/04/14
321
Уважаемые господа!
nnosipov в сообщении #1490886 писал(а):
Имеет: $x=0$, $y=z=1$. Давайте для начала сформулируем корректное утверждение.

Можно добавить, - кроме тривиальных решений. Но, в равенстве $1/1=1/1$ делимые также равны, поэтому с этой точки зрения пара $1,1$ не взаимно простые.
Null в сообщении #1490889 писал(а):
Почему?

Потому что множитель является степенью. А степень целого числа не может быть числом вида $4k+2=2(2k+1)$
Shadow в сообщении #1491046 писал(а):
Перестаньте плодить все новые и новые переменные, сами себя запутываете.

Это не переменная, а число решения $x_1=u_1u_2=(m^2-n^2)$
Господа!
Более внимательно обдумав своё докво, нашел в нём слабое место. А именно, почему пара чисел $m,n$ одна для определения всех переменных. Здесь необходимо пояснить.
Определим значения $u,v$. Составим выражения

$$m_0=\frac {u+v}{2}; \qquad n_0=\frac {u-v}{2} \qquad (01)$$ Откуда $m_0+n_0=u; \qquad m_0-n_0=v; \qquad uv=(m_0^2-n_0^2)$.
Предположим, что числа $u,v$ определяются не так как было ранее, а разными парами $m,n$: $u=m^2_1-n^2_1; \quad v=m^2_2+n^2_2$
Тогда
$uv=m_0^2-n_0^2=(m^2_1-n^2_1)(m^2_2+n^2_2)=m^2_1m^2_2-n^2_1m^2_2+m^2_1n^2_2-n^2_1n^2_2\quad (02)$

Числа $m_1,n_1$, а также $m_2,n_2$ разной четности. Поэтому в правой части (02) только одно нечетное слагаемое. Пусть это будет $m^2_1m^2_2$. Тогда слагаемое $n^2_1n^2_2$ - четное.

Так как числа $m_1 \ne  m_2;\qquad n_1 \ne n_2$. то
$m^2_1m^2_2 \ne 1$, а произведение четных квадратов $n^2_1n^2_2 \ne 4$

Но это условия бесконечного спуска. Как бы мы не пытались получить разность двух квадратов за счет использования суммы свободных слагаемых (если она не равна нулю) $(-n^2_1m^2_2+m^2_1n^2_2)$ в (02), всегда будет существовать разность с меньшими квадратами.
Поэтому справедливо утверждение, что пара $m,n$ определяет все числа решения, так как $m_0^2-n_0^2=(m^2-n^2)(m^2+n^2)$

 Профиль  
                  
 
 Re: Гипотеза Била для уравнения $x^p=y^4-z^4$
Сообщение09.11.2020, 14:36 
Заслуженный участник


20/12/10
8858
binki в сообщении #1491335 писал(а):
Но, в равенстве $1/1=1/1$ делимые также равны, поэтому с этой точки зрения пара $1,1$ не взаимно простые.
При таком отношении к базовым понятиям надеяться получить от Вас сколь-нибудь разумный текст не имеет смысла. Ваши тексты --- это какие-то потоки сознания. Море новых обозначений без какой бы то ни было предыстории, и только.

 Профиль  
                  
 
 Re: Гипотеза Била для уравнения $x^p=y^4-z^4$
Сообщение09.11.2020, 18:14 
Заслуженный участник


12/08/10
1623
binki в сообщении #1491335 писал(а):
Потому что множитель является степенью.
Вы этого еще в этот момент не доказали. Получается что они степени потому что взаимно просты и взаимно просты потому что они степени. Так в доказательстве нельзя.

 Профиль  
                  
 
 Re: Гипотеза Била для уравнения $x^p=y^4-z^4$
Сообщение10.11.2020, 17:58 


19/04/14
321
nnosipov в сообщении #1491352 писал(а):
При таком отношении к базовым понятиям надеяться получить от Вас сколь-нибудь разумный текст не имеет смысла.

Уважаемый nnosipov

Ваши замечания очень ценны для темы. Досадно, что текст получился таким, каким он получился. Придётся в ближайшее время отделить больше базовой части от доказательной (к базовым понятиям буду относиться более серьёзно).
Null в сообщении #1491385 писал(а):
Вы этого еще в этот момент не доказали

Уважаемый Null
Вы правы. Докво сложнее приведённого в теме. Рассмотрим уравнение для случая, когда левая часть четная
$x^p=u^pv^p=2(y^2-z^2)(y^2+z^2)/2$. Обе степени разлагаются соответственно в разность и сумму квадратов. Четная разложится в сумму двух квадратов одинаковой четности $u^p=2(y^2-z^2)=y^2_c-z^2_c$, а нечетная в сумму двух квадратов разной четности $v^p=(y^2+z^2)/2=y^2_n+z^2_n$. И
$$u^pv^p=y^2_cy^2_n-z^2_cy^2_n+y^2_cz^2_n-z^2_cz^2_n$$ Правая часть не имеет решения в целых числах если она равна разности биквадратов, так как появляется бесконечный спуск. Показано на аналогичном примере в предыдущем сообщении.

 Профиль  
                  
 
 Re: Гипотеза Била для уравнения $x^p=y^4-z^4$
Сообщение10.11.2020, 18:26 
Заслуженный участник


12/08/10
1623
Дальнейшие рассуждения не имеют математического смысла. Соответственно проверка невозможна. Соберите все в 1 кучу. И повторю еще раз: новые строчки должны быть строго обоснованы.

 Профиль  
                  
 
 Re: Гипотеза Била для уравнения $x^p=y^4-z^4$
Сообщение11.11.2020, 07:53 


19/04/14
321
Null в сообщении #1491541 писал(а):
Соберите все в 1 кучу. И повторю еще раз: новые строчки должны быть строго обоснованы.

Уважаемый Null
Спасибо за совет. Так и поступлю Но, чтобы поставить точку по бесконечному спуску, даю дополнительные разъяснения.

$$u^pv^p=(y^2_c-z^2_c )(y^2_n+z^2_n )=y^2_cy^2_n-z^2_cy^2_n+y^2_cz^2_n-z^2_cz^2_n \quad (03)$$
В процессе спуска за счет уменьшения $(y^2_c,z^2_c,y^2_n,z^2_n )$ нечетное слагаемое в правой (03) никогда не станет $1$.
$z^2_c$ тоже не может быть равной $1$ (степень без единицы не степень), поэтому все четные слагаемые (03) (всегда оставаясь составными) не могут стать равными $4$. Только при этих условиях спуск мог бы закончится.

 Профиль  
                  
 
 Re: Гипотеза Била для уравнения $x^p=y^4-z^4$
Сообщение11.11.2020, 08:06 
Заслуженный участник


12/08/10
1623
У вас нет никакого спуска. Его нужно выписать явно. Но то что идет до него тоже не доказано.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 20 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Mikhail_K


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group