2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Разложение волны на проекции
Сообщение02.11.2020, 00:34 


17/10/16
5199
ViktorArs
Я вам предлагаю численно решить волновое уравнение вида $\frac{d^2u(x,y,t)}{dt^2} -(\frac{d^2u(x,y,t)}{dx^2}+\frac{d^2u(x,y,t)}{dy^2})=f(x,y,t)$ на плоскости (поперечные колебания мембраны). Это и интересно и несложно и полезно. К тому же можно и решение вашей задачи получить, в чем бы оно ни заключалось. Заодно лучше поймете, что вам нужно.

Берете таблицу 50×50 ячеек (мембрана) и задаете на ней функцию ее начального положения $u_0(x,y,0)$. Это произвольная функция. Теперь на первом шаге для каждой ячейки вычисляете ее отклонение от среднего положения (от центра тяжести) четырех ее соседей. Это еще одна таблица 50×50 (полученные цифры - ускорение каждой ячейки). На втором шаге, имея шаг по времени и ускорение, вычисляем скорость каждой ячейки (еще одна таблица 50×50). На четвертом шаге тем же методом, имея скорость и шаг по времени, вычисляем новое положение ячейки. На пятом шаге копируем эти положения в первую таблицу и начинаем следующий цикл. Все это можно легко посчитать в excel.
Эта модель дает все характерные свойства волны: отражение, преломление, интерференцию, дифракцию, рассеивание, затухание. Можно тут и любые неоднородности среды задать. Попробуйте, это не так сложно, как кажется.

 Профиль  
                  
 
 Re: Разложение волны на проекции
Сообщение02.11.2020, 11:19 


11/03/16
108
Спасибо большое.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 17 ]  На страницу Пред.  1, 2

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: lel0lel


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group