2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Inequality No.1
Сообщение29.09.2020, 09:21 


01/08/19
101
Prove that the triangle is valid:
$$\sin\frac{A}{2}\sin\frac{B}{2}+\sin\frac{B}{2}\sin\frac{C}{2}+\sin\frac{C}{2}\sin\frac{A}{2}\leq\frac{5}{8}+\frac{r}{4R}$$

 Профиль  
                  
 
 Re: Inequality No.1
Сообщение29.09.2020, 13:18 
Заслуженный участник
Аватара пользователя


23/08/07
5492
Нов-ск
$\displaystyle p=\sin\frac{A}{2}+\sin\frac{B}{2}+\sin\frac{C}{2}$ - обозначение

$\displaystyle p \le\frac{3}{2}$ - из выпуклости синуса

$\displaystyle \frac{r}{4R}=\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$ - очевидно

$\displaystyle (1-\sin\frac{A}{2})(1-\sin\frac{B}{2})(1-\sin\frac{C}{2})\le (1-\frac13p)^3$ - неравенство средних

$\displaystyle \sin\frac{A}{2}\sin\frac{B}{2}+\sin\frac{B}{2}\sin\frac{C}{2}+\sin\frac{C}{2}\sin\frac{A}{2}\leq\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}+\frac13p^2-\frac{1}{27}p^3$ - вот и всё

 Профиль  
                  
 
 Re: Inequality No.1
Сообщение29.09.2020, 21:58 
Заблокирован


16/04/18

1129
Для суммы квадратов таких половинных синусов в треугольнике - есть хорошее тождество? Намекаю на Коши-Буняковского.

 Профиль  
                  
 
 Re: Inequality No.1
Сообщение01.10.2020, 00:54 


30/03/08
196
St.Peterburg
$$\sin\frac{A}{2}\sin\frac{B}{2}+\sin\frac{B}{2}\sin\frac{C}{2}+\sin\frac{C}{2}\sin\frac{A}{2}\le \dfrac{1}{2}+\dfrac{r}{2R}\le \dfrac{5}{8}+\dfrac{r}{4R}$$
$$(...)^2=\sin^2\frac{A}{2}  \sin^2\frac{B}{2}+\sin^2\frac{B}{2}  \sin^2\frac{C}{2}+\sin^2\frac{C}{2}  \sin^2\frac{A}{2}+  2 \sin\frac{A}{2}  \sin\frac{B}{2}   \sin\frac{C}{2} \left(\sin\frac{A}{2}+ \sin\frac{B}{2}+ \sin\frac{C}{2}\right)  = $$
$$  =  \dfrac{p^2+r^2}{16R^2}-\dfrac{r}{2R}+\dfrac{r}{2R}\left(\sin\frac{A}{2}+\sin\frac{B}{2}+\sin\frac{C}{2}\right)\le \left(\dfrac{1}{2}+\dfrac{r}{2R}\right)^2$$
$$p^2 \le 4R^2+4rR+3r^2\ ,\ \  \ \sin\frac{A}{2}+\sin\frac{B}{2}+\sin\frac{C}{2}\le \dfrac{3}{2}$$

 Профиль  
                  
 
 Re: Inequality No.1
Сообщение01.10.2020, 07:59 
Заблокирован


16/04/18

1129
К-Б немножко не хватает, оно в верхнем среднем неравенстве из предыдущего сообщения даёт 1 вместо 1/2.

 Профиль  
                  
 
 Re: Inequality No.1
Сообщение27.12.2020, 09:01 
Заслуженный участник


26/06/07
1929
Tel-aviv
rsoldo в сообщении #1485134 писал(а):
Prove that the triangle is valid:
$$\sin\frac{A}{2}\sin\frac{B}{2}+\sin\frac{B}{2}\sin\frac{C}{2}+\sin\frac{C}{2}\sin\frac{A}{2}\leq\frac{5}{8}+\frac{r}{4R}$$

В стандартных обозначениях нужно доказать, что:
$$\sum_{cyc}\sqrt{\frac{1-\frac{b^2+c^2-a^2}{2bc}}{2}\cdot\frac{1-\frac{a^2+c^2-b^2}{2ac}}{2}}\leq\frac{5}{8}+\frac{\frac{2S}{a+b+c}}{\frac{abc}{S}}$$ или
$$\sum_{cyc}\sqrt{\frac{(a+b-c)^2(a+c-b)(b+c-a)}{abc^2}}\leq\frac{5}{2}+\frac{\prod\limits_{cyc}(a+b-c)}{2abc}.$$
Пусть теперь $a+b-c=z$, $a+c-b=y$ и $b+c-a=x$.
Тогда нужно доказать, что
$$4\sum_{cyc}\sqrt{\frac{xyz^2}{(x+z)(y+z)(x+y)^2}}\leq\frac{5}{2}+\frac{8xyz}{2(x+y)(x+z)(y+z)}$$ или
$$8\sum_{cyc}z\sqrt{xy(x+z)(y+z)}\leq\sum_{cyc}(5x^2y+5x^2z+6xyz).$$
Теперь, AM-GM даёт:
$$8\sum_{cyc}z\sqrt{xy(x+z)(y+z)}\leq4\sum_{cyc}z(x(y+z)+y(x+z))=4\sum_{cyc}(x^2y+x^2z+2xyz)$$ и остаётся доказать, что
$$4\sum_{cyc}(x^2y+x^2z+2xyz)\leq\sum_{cyc}(5x^2y+5x^2z+6xyz)$$ или
$$\sum_{cyc}z(x-y)^2\geq0.$$

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 6 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: poznajushiy subjekt


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group