2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Образ измеримой функции
Сообщение05.05.2020, 19:48 
Аватара пользователя


31/08/17
2116
Consider a measurable function $f:\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}^n,\quad f=f(x,y).$

1) For almost all $(x,y)$ we have $|f(x,y)|\le const$;

2) for almost all $y$ the function $f$ is a continuous function of $x$.

Let $\mathrm{conv}\,D$ stand for the closed convex hull of a set $D$ and let $B_r(x)\subset\mathbb{R}^n$ be the open ball
with radius $r>0$ and with center at $x$.

I want to write
$$\bigcap_{r,r'>0}\bigcap_N\mathrm{conv}\,f(B_r(x_0),B_{r'}(y_0)\backslash N)=\bigcap_{r'>0}\bigcap_N\mathrm{conv}\,f(x_0,B_{r'}(y_0)\backslash N).$$
Here $\bigcap_N$ stands for the intersection over all measure null sets $N\subset\mathbb{R}^n$.
I feel that there must be some uniform continuity conditions on $f$ for this equality to be valid but can not prove anything

 Профиль  
                  
 
 Re: Образ измеримой функции
Сообщение06.05.2020, 00:06 
Аватара пользователя


31/08/17
2116
сделано, можно закрывать

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 2 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group