Второй фокус оптимального эллипса лежит на соединяющем старт и финиш отрезке (на его середине, ессно).
Это тоже как-то неспроста.
И вот ещё. Через центр планеты проводим прямую, параллельную прямой, соединяющей старт и финиш. Эта прямая где-то пересекается с поверхностью планеты. Соединяем эту точку пересечения и старт (или финиш, что ближе), получаем прямую, вдоль которой надо стрелять (т.е. касательную к оптимальному эллипсу в точке старта\финиша).
-- 06.03.2020, 23:20 --(Оффтоп)
Центр окружности совпадает с фокусом эллипса, а значит большая ось эллипса является осью симметрии. А значит угол пересечения эллипса и окружности в обеих точках пересечения одинаков. Отсюда следует, что не важно, под каким углом запустили снаряд, под оптимальным или нет - он воткнется в планету под тем же углом.
И правда. Вот скажет кто-то, и как глаза открылись...