2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Вопрос про степени свободы
Сообщение24.02.2020, 16:10 


06/05/18
27
Насколько я знаю, число степеней свободы - это кол-во чисел, необходимых для полного описания состояния системы. Но с другой стороны, существует биекция $\mathbb{R}^n \leftrightarrow \mathbb{R}$. То есть можно задать состояние любой системы одним вещественным числом. Не теряется ли из-за этого смысл понятия степеней свободы?

 Профиль  
                  
 
 Re: Вопрос про степени свободы
Сообщение24.02.2020, 16:26 
Аватара пользователя


31/08/17
2116
Число степеней свободы это размерность пространства виртуальных перемещений
Болотин Карапетян Кугушев Трещев Теоретическая механика

 Профиль  
                  
 
 Re: Вопрос про степени свободы
Сообщение24.02.2020, 17:23 
Заслуженный участник
Аватара пользователя


23/07/05
17976
Москва

(Оффтоп)

versham в сообщении #1441228 писал(а):
существует биекция $\mathbb{R}^n \leftrightarrow \mathbb{R}$. То есть можно задать состояние любой системы одним вещественным числом
Можно. А Вы когда-нибудь такую биекцию видели? Как Вы с ней будете работать?
Но проблемы с "работать" не главные. Главная проблема с определением числа степеней свободы.

Кстати, обратите внимание, что состояние механической системы, состоящей из одного протяжённого абсолютно твёрдого тела, задаётся девятью числами (три координаты, три компоненты импульса, три компоненты момента импульса. А сколько там степеней свободы?

 Профиль  
                  
 
 Re: Вопрос про степени свободы
Сообщение24.02.2020, 17:32 
Аватара пользователя


31/08/17
2116
Someone в сообщении #1441243 писал(а):
состояние механической системы, состоящей из одного протяжённого абсолютно твёрдого тела, задаётся девятью числами (три координаты, три компоненты импульса, три компоненты момента импульса.

еще три координаты добавить не хотите?

 Профиль  
                  
 
 Re: Вопрос про степени свободы
Сообщение24.02.2020, 19:11 


04/07/15
137
versham в сообщении #1441228 писал(а):
... существует биекция $\mathbb{R}^n \leftrightarrow \mathbb{R}$. То есть можно задать состояние любой системы одним вещественным числом. Не теряется ли из-за этого смысл понятия степеней свободы?

Например, движение манипулятора с числом степеней свободы N можно описать одной степенью свободы. И смысл при этом не теряется, потому что сделать это можно бесконечным числом способов, решая одну и ту же задачу.

 Профиль  
                  
 
 Re: Вопрос про степени свободы
Сообщение24.02.2020, 21:56 
Заблокирован по собственному желанию


20/07/18

367
Биекция есть между множествами, но нет диффеоморфизма между этими многообразиями. Если вопрос касается теоретической механики как абстракции, то его надо решить просто внимательно проанализировав определения.

Говоря же с точки зрения реальной физики, нам нужно описание системы не просто в виде биективной нумерации каждого состояния , а чтобы эта нумерация удовлетворяла некоторым разумным требованиям, которые в физике как данность.
В частности, чтобы слабо отличающиеся состояния были близкими точками, чтобы в этой модели можно было бы проводить разумные операции, подразумевающие дифференцируемость и т.п.
А это отображение все рушит и делает уродство. :-)

 Профиль  
                  
 
 Re: Вопрос про степени свободы
Сообщение24.02.2020, 22:11 
Заслуженный участник
Аватара пользователя


23/07/05
17976
Москва
pogulyat_vyshel в сообщении #1441247 писал(а):
еще три координаты добавить не хотите?
А, ну да, про три угла забыл.

 Профиль  
                  
 
 Re: Вопрос про степени свободы
Сообщение24.02.2020, 23:22 
Заслуженный участник
Аватара пользователя


31/01/14
11312
Hogtown
EXE в сообщении #1441276 писал(а):
Например, движение манипулятора с числом степеней свободы N можно описать одной степенью свободы. И смысл при этом не теряется, потому что сделать это можно бесконечным числом способов, решая одну и ту же задачу.
Смысл при этом теряется полностью, поскольку как правильно отмечено
Guvertod в сообщении #1441315 писал(а):
чтобы слабо отличающиеся состояния были близкими точками, чтобы в этой модели можно было бы проводить разумные операции, подразумевающие дифференцируемость и т.п.

 Профиль  
                  
 
 Re: Вопрос про степени свободы
Сообщение24.02.2020, 23:55 
Заслуженный участник
Аватара пользователя


30/01/06
72407
В общем, для небольших множеств полезно понятие мощности. Сначала конечные, потом счётные и мощности континуума.
А для больших множеств это понятие уже не так полезно, оно "недостаточно детально". И среди пространств с одной мощностью - удобно различать пространства с разными размерностями. Опять же, число измерений может быть разным конечным, потом счётным, континуальным.

 Профиль  
                  
 
 Re: Вопрос про степени свободы
Сообщение25.02.2020, 03:21 
Заслуженный участник


27/04/09
28128
Munin в сообщении #1441344 писал(а):
А для больших множеств это понятие уже не так полезно, оно "недостаточно детально".
Ой, оно и для счётных и конечных недостаточно детально. Сравним $\mathbb Q$ и $\mathbb N$, сравним $\mathbb Z_{2^k}$ и $\mathbb Z_2^k$… Вообще вспоминать мощность — подобно обращению к свободе слова в попытках защитить свою позицию:

(больше полноты)

https://xkcd.com/1357 «Free Speech», alt text писал(а):
I can't remember where I heard this, but someone once said that defending a position by citing free speech is sort of the ultimate concession; you're saying that the most compelling thing you can say for your position is that it's not literally illegal to express.
если мы не можем об объекте сказать ничего кроме мощности его носителя (и если бы он всегда вообще был один!), но не занимаемся при этом именно теорией множеств, то это значит, что мы делаем что-то очень сильно подозрительное.

 Профиль  
                  
 
 Re: Вопрос про степени свободы
Сообщение25.02.2020, 10:12 


04/07/15
137
Red_Herring в сообщении #1441332 писал(а):
Смысл при этом теряется полностью, поскольку как правильно отмечено

Вы говорите о расчёте кинематики манипулятора (рычажного механизма)? Потому что в данном случае это утверждение
Guvertod в сообщении #1441315 писал(а):
чтобы слабо отличающиеся состояния были близкими точками, чтобы в этой модели можно было бы проводить разумные операции, подразумевающие дифференцируемость и т.п.

не соответствует действительности.

 Профиль  
                  
 
 Re: Вопрос про степени свободы
Сообщение25.02.2020, 11:13 
Заслуженный участник
Аватара пользователя


31/01/14
11312
Hogtown
EXE в сообщении #1441386 писал(а):
Вы говорите о расчёте кинематики манипулятора (рычажного механизма)?
Обо всем. За пределами теории множеств равная кардинальность особого смысла не имеет, и Кантор это прекрасно понимал и продемонстрировал, придунэмав Канторов континуум.

 Профиль  
                  
 
 Re: Вопрос про степени свободы
Сообщение25.02.2020, 17:13 
Заслуженный участник


27/04/09
28128
EXE
Если у вас есть манипулятор, вы же не рассматриваете только один конкретный способ его движения? Тогда вам не удастся рассматривать только $\mathbb R$ (моменты времени, от которого зависит состояние манипулятора, жвущее в некотором многообразии). Кроме того такое отображение не биекция (ну кроме случая, когда то многообразие изоморфно промежутку $\mathbb R$), так что непонятно, как это должно быть связано с вопросом ТС, и не очень понятно, что вы в точности имеете в виду кстати (мне пришлось додумывать) и каким образом это аргумент или контраргумент к чему.

 Профиль  
                  
 
 Re: Вопрос про степени свободы
Сообщение26.02.2020, 18:59 


04/07/15
137
arseniiv в сообщении #1441475 писал(а):
EXE
Если у вас есть манипулятор, вы же не рассматриваете только один конкретный способ его движения? Тогда вам не удастся рассматривать только $\mathbb R$ (моменты времени, от которого зависит состояние манипулятора, жвущее в некотором многообразии). Кроме того такое отображение не биекция (ну кроме случая, когда то многообразие изоморфно промежутку $\mathbb R$), так что непонятно, как это должно быть связано с вопросом ТС, и не очень понятно, что вы в точности имеете в виду кстати (мне пришлось додумывать) и каким образом это аргумент или контраргумент к чему.

При определении траектории движения координаты всех точек можно свести к зависимости от одной переменной. Это взаимно однозначное соответствие на подмножествах всей траектории движения, пусть под R будет время. При этом число управляющих параметров значения не имеет. Да, множество видов таких зависимостей бесконечно и несчётно для конкретной траектории.
Возможно, мой пример не является ответом на вопрос автора, но взаимно однозначное соответствие между точками пространства размерности N и размерности 1 в данном случае имеет место. Собственно, я сразу же на всякий случай сказал, что количество таких зависимостей бесконечно при решении одной и той же задачи.

 Профиль  
                  
 
 Re: Вопрос про степени свободы
Сообщение26.02.2020, 19:37 
Аватара пользователя


31/08/17
2116
Изображение

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 22 ]  На страницу 1, 2  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group