В пункте 2) надо написать не "диагональны", а "диагонализируемы"
Если так, то совсем другое дело! Но у Желобенко-Штерна написано "диагональны". Ладно, будем считать опечатка
Если позволите, то тогда пойдем дальше. Есть ли конструктивный способ нахождения картановской подалгебры и базиса, в котором выполняется условие
, где
- любой вектор базиса в
(а вовсе не любой вектор
)? Вот есть у меня некий набор из
матриц, являющийся базисом алгебры Ли. Ничего про них не известно кроме того, что коммутатор любой пары равен линейной комбинации этих матриц. Но матрицы заданы, в цифирьках. Что я должен запрограммировать в компьютере, чтобы компьютер мне сказал 1) какая размерность картановской подалгебры
, 2) выдал новые матрицы, первые
из которых -- это базис картановской подалгебры, все они друг с другом коммутируют, а оставшиеся такие, что выполняется указанное выше соотношение. Все матрицы вместе, естественно, должны составлять базис, т.е. каждая должна быть линейной комбинацией старых матриц.
Проблему конечной точности вычислений пока оставим стороне, представим себе, что у нас есть компьютер, способный делать точные вычисления с действительными числами (ну тогда и с комплексными тоже).