Решил изучить как ведут себя остатки от деления квадратов и кубов в зависимости от модуля сравнения. Например, при сравнении по модулю 13 можно получить такую табличку:
Код:
x x^2 x^3
0 0 0
1 1 1
2 4 8
3 9 1
4 3 12
5 12 8
6 10 8
7 10 5
8 12 5
9 3 1
10 9 12
11 4 5
12 1 12
Сразу видно, что у функции квадрат всегда есть повторяющиеся остатки, и, как следствие, отсутствующие остатки. Это, в принципе, очевидно: можно для каждого остатка рассмотреть дополнительный отрицательный остаток, после возведения в квадрат остатки с одинаковым модулем дадут один результат (кроме нуля и половины модуля, в случае, если он чётный).
С кубической функцией же результат немного интереснее. Иногда бывает так, что остатки куба пробегают все возможные значения остатков, и каждый остаток встречается только один раз без повторов и без пропусков. Например, табличка для остатков по модулю 10:
Код:
x x^2 x^3
0 0 0
1 1 1
2 4 8
3 9 7
4 6 4
5 5 5
6 6 6
7 9 3
8 4 2
9 1 9
Сразу же хочется узнать, а что же это за числа, по модулю которых кубы дают все возможные остатки. Перебор в лоб дал такую вот последовательность до сотни:
2, 3, 5, 6, 10, 11, 15, 17, 22, 23, 29, 30, 33, 34, 41, 46, 47, 51, 53, 55, 58, 59, 66, 69, 71, 82, 83, 85, 87, 89, 94.
То, что в этой последовательности отсутствуют квадраты и вообще числа, в разложении которых на простые есть повторяющиеся множители, думаю, очевидно. Если модуль
можно представить в виде
, где
, то число
при возведении в квадрат даст
, которое делится на
и, поэтому, даёт по модулю
ноль. Ноль при умножении на
снова даёт ноль, поэтому по крайней мере нулевой остаток у кубической функции повторяется.
С остальными отсутствующими в последовательности числами (среди которых есть и простые) не всё так просто. Так же анализируя разложение на простые множители, я обнаружил, что если модуль делится на простое число, которое даёт при делении на 3 остаток 1, то такой модуль в последовательность не входит. В результате, получается правило:
последовательность состоит из чисел, в разложении которых на простые отсутствуют повторяющиеся множители И простые множители, сравнимые с 1 по модулю 3 (да, масло масленое: разложение модуля надо проверять по модулю). Проверка в лоб до
, показало, что это правило выполняется.
Собственно вот мой вопрос: почему это так?