Нет, ещё раз, а что, в промежуточных логиках, интуиционистской логике и минимальных логиках совсем никаких проблем нет?
В конструктивном анализе это всё трактуется совершенно иначе, начиная с того, что

- не тавтология, и заканчивая тем, что требования конструктивности не ограничиваются логикой, а распространяются и на прикладные аксиоматики (имеются в виду свойства теорий - дизъюнктивности, существования и правило Чёрча). В итоге всё вроде бы оказывается направленным на то, чтобы взаимозаменяемость выводимости и следствия сохранялась. Хотя я не уверен, что оная взаимозаменяемость в итоге гарантируется.
Зато можно быть совершенно уверенным в том, что в классическом анализе её нет.