2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Оффтоп из https://dxdy.ru/topic137743.html
Сообщение24.11.2019, 06:46 
Аватара пользователя
mihaild в сообщении #1427412 писал(а):
Хосподи, избави нас от физиков.

Я всего лишь пересказываю то, что написано в учебниках алгебры. Не матлогики, а алгебры, подчёркиваю.

arseniiv в сообщении #1427414 писал(а):
Я так понял, это шутка.

Причём основанная на словах Someone: он написал
    Someone в сообщении #1427398 писал(а):
    ...бесконечное множество аксиом, с которыми можно познакомиться...
то есть, прямо в учебнике эти аксиомы и написаны (можно познакомиться с каждой отдельной), а их бесконечно много, значит, и учебник бесконечно большой.
Если бы было написано
    ...бесконечное множество аксиом, с которым можно познакомиться...
или хотя бы
    ...бесконечные множества аксиом, с которыми можно познакомиться...
то значит, в учебнике было бы множество (одно, или может быть, несколько), а с ним можно познакомиться. Множество может уместиться в учебнике, даже если учебник конечный.

-- 24.11.2019 06:48:11 --

mihaild в сообщении #1427412 писал(а):
Во всех разделах, кроме логики (и может быть каких-то экзотических кусков алгебры) про это вообще не думают, и с равенствами обращаются "как в школе"

Я ровно это и написал, и получил от вас злую обвинительную реплику.

 
 
 
 Re: Ассоциативность в абелевой группе
Сообщение24.11.2019, 07:45 
Munin в сообщении #1427422 писал(а):
Я ровно это и написал, и получил от вас злую обвинительную реплику.

Ну-ну.
Munin в сообщении #1420306 писал(а):
Хосподи, избави нас от математиков.

Предлагаю эмоциональную часть диспута закончить.

 
 
 
 Re: Ассоциативность в абелевой группе
Сообщение24.11.2019, 08:31 
Аватара пользователя
Lia
Обратите внимание на различие между ситуациями.

 
 
 
 Re: Ассоциативность в абелевой группе
Сообщение24.11.2019, 08:34 
В любом случае.

 
 
 
 Re: Ассоциативность в абелевой группе
Сообщение24.11.2019, 15:06 
Аватара пользователя
Munin в сообщении #1427422 писал(а):
Я всего лишь пересказываю то, что написано в учебниках алгебры.

В учебниках алгебры обычно вообще явно не говорят про утверждения. А если говорят, и говорят, что $a = b$ - это два утверждения, то это плохие учебники даже по алгебре.
То, что большие (в формальном виде) куски доказательства опускаются и вообще не упоминаются - например, если получили $a = b$, а нужно $b = a$, то скорее всего утверждение $b = a$ даже явно выписано не будет - не означает, что их нет.

 
 
 
 Re: Ассоциативность в абелевой группе
Сообщение24.11.2019, 20:03 
Аватара пользователя
mihaild в сообщении #1427453 писал(а):
и говорят, что $a = b$ - это два утверждения

Ого! Это как тут можно насчитать два?

mihaild в сообщении #1427453 писал(а):
не означает, что их нет.

Чего я и не произносил.

 
 
 
 Re: Ассоциативность в абелевой группе
Сообщение24.11.2019, 22:49 
Аватара пользователя
Munin в сообщении #1427502 писал(а):
Это как тут можно насчитать два?
Это вам виднее. ТС спросил, можно ли видеть два высказывания, глядя на $a = b$, и вы сказали, что можно.

 
 
 
 Re: Ассоциативность в абелевой группе
Сообщение25.11.2019, 05:31 
Аватара пользователя
mihaild в сообщении #1427515 писал(а):
Это вам виднее. ТС спросил, можно ли видеть два высказывания, глядя на $a = b$, и вы сказали, что можно.

Это вы ошиблись, читая меня. Я такого не писал.

 
 
 
 Re: Ассоциативность в абелевой группе
Сообщение25.11.2019, 11:56 
Аватара пользователя
Munin в сообщении #1427325 писал(а):
oleg.k в сообщении #1427306 писал(а):
Т.е. можно просто смотреть на выражение с равенством и видеть два высказывания в обе стороны?

Да.

В чем здесь принципиальное отличие от
mihaild в сообщении #1427515 писал(а):
ТС спросил, можно ли видеть два высказывания, глядя на $a = b$, и вы сказали, что можно
?
Или вы считаете принципиальной одну из замен:
-"выражения с равенством" на "$a = b$"
-"видеть два высказывания в обе стороны" на "видеть два высказывания"
-"просто смотреть и видеть" на "видеть"
?

 
 
 
 Re: Ассоциативность в абелевой группе
Сообщение25.11.2019, 16:28 
Аватара пользователя
Человек запинается, изучая алгебру. Я хотел ему помочь. Когда обычно ученики изучают алгебру (а учителя рассказывают, в том числе авторы учебников), они не запинаются на этом месте. Каждый раз на нём запинаться, тратить мозги на обдумывание разницы между $a=b$ и $b=a$ - лишние умственные усилия, это как путаться в развязанных шнурках ботинок.

Вы начали углублённо объяснять, что да как. Пожалуйста, особенно если хотите испортить данному конкретному человеку жизнь. Но ко мне-то чего цепляться? И уж тем более, ко всем физикам!

 
 
 
 Re: Ассоциативность в абелевой группе
Сообщение25.11.2019, 17:20 
Аватара пользователя

(Оффтоп)

Вот долго смотрел на происходящее...
Munin в сообщении #1427624 писал(а):
Я хотел ему помочь.
Как физик говорю. Не надо помогать математикам объяснять математику. Особенно эту её часть. Это неразумно. Отвечать здесь, пожалуйста, не нужно, настоятельно прошу. Просто имейте в виду наличие другой точки зрения.

 
 
 
 Re: Ассоциативность в абелевой группе
Сообщение25.11.2019, 17:40 
Аватара пользователя
Eule_A в сообщении #1427633 писал(а):
Не надо помогать математикам объяснять математику.

Да я уже и перестал. Когда от меня отвяжутся?

 
 
 
 Re: Оффтоп из https://dxdy.ru/topic137743.html
Сообщение26.11.2019, 03:10 
 !  Munin
Предупреждение за оффтоп в ПРР.

 
 
 [ Сообщений: 13 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group