2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Обобщение Великой Теоремы Ферма и Теоремы Пифагора
Сообщение04.04.2019, 21:17 
УТВЕРЖДЕНИЕ

(Обобщение Великой Теоремы Ферма и Теоремы Пифагора)


Уравнение вида:
$$a^x+b^y=c^z$$ (1)

в котором $a,b,c$ - целые числа, $x,y,z$ – натуральные числа:
Имеет бесконечное множество решений в целых числах при $x=y=z=2$, а треугольник со сторонами $a,b,c$ - является прямоугольным. (Теорема Пифагора).
Не имеет решения в целых числах при $2<x\leqslant y\leqslant z$ (Обобщённая Теорема Ферма).
Прежде чем приступить к доказательству этого утверждения, определим допустимые значения чисел $a,b,c$ для которых решение возможно в том смысле, который вкладывал в него П. Ферма; именно - нельзя разложить куб на два меньших куба без остатка, нельзя разложить биквадрат на два меньших биквадрата без остатка и так и далее.
Необходимые и достаточные условия:
$$a\times b\times c\ne0$$
$$a\ne b\ne c$$
$$a+b>c$$
Решение будем искать в положительных числах, так как, очевидно, что если есть решение в отрицательных числах, то оно есть и в положительных.
ДОКАЗАТЕЛЬСТВО

Допустим, при каких-то значений $a,b,c,x,y,z$ уравнение (1) выполняется. Тогда выполняется следующее неравенство:
$$a^{x-1}+b^{y-1}> c^{z-1}$$ (2)


Построим треугольник со сторонами $a^{x-1},b^{y-1}, c^{z-1}$ и углами $\alpha,\beta,\gamma$. Из него, по теореме синусов, получим:
$$\frac{a^{x-1}}{\sin\alpha} = \frac{b^{y-1}}{\sin\beta} = \frac{c^{z-1}}{\sin\gamma}$$
Откуда:
$$a^{x-1}= c^{z-1}\frac{\sin\alpha}{\sin\gamma}; b^{y-1} = c^{z-1}\frac{\sin\beta}{\sin\gamma}$$

Подставим полученные значения в (2), получим:
$$c^{z-1}\frac{\sin\alpha}{\sin\gamma}+c^{z-1}\frac{\sin\beta}{\sin\gamma} > c^{z-1}$$

Помножим в последнем неравенстве каждый член, соответственно, на $a,b,c$ и с учётом (1) получим равенство:
$$ac^{z-1}\frac{\sin\alpha}{\sin\gamma}+bc^{z-1}\frac{\sin\beta}{\sin\gamma} = cc^{z-1}$$

Сократим на $c^{z-1}$:
$$a\frac{\sin\alpha}{\sin\gamma}+b\frac{\sin\beta}{\sin\gamma} = c$$

Приведём к общему знаменателю:
$$a\sin\alpha+b\sin\beta = c\sin\gamma$$

Разделим на $c$:
$$\frac{a}{c}\sin\alpha+\frac{b}{c}\sin\beta=\sin{\gamma}$$(3)

Где:
$$\gamma=(\pi-(\alpha+\beta))$$
$$\sin\gamma=\sin{(\pi-(\alpha+\beta))}=\sin{(\alpha+\beta)}= \sin\alpha\cos\beta+\sin\beta\cos\alpha$$
Подставим значение $\sin\gamma$ в (3), получим:
$$\frac{a}{c}\sin\alpha + \frac{b}{c}\sin\beta = \sin\alpha\cos\beta+\sin\beta\cos\alpha$$

Последнее равенство имеет очевидное решение:
$$\frac{a}{c}=\cos\beta; \frac{b}{c}=\cos\alpha$$

Возведём левые и правые части последних равенств, первого – в $x$, второго в $y$, приведём к общему знаменателю:
$$a^{x}=c^{x}\cos^{x}\beta; b^{y}=c^{y}\cos^{y}\alpha$$

Суммируем правые и левые части последних равенств:
$$a^{x}+b^{y}=c^{x}\cos^{x}\beta+c^{y}\cos^{y}\alpha$$

Исходя из (1), заменим $a^{x}+b^{y}$ на $c^{z}, получим:
$$c^{z}=c^{x}\cos^{x}\beta+c^{y}\cos^{y}\alpha$$(4)


Разделим в (4) правую и левую части на $c^{z}$ получим:
$$1=\frac{c^{x}}{c^{z}}\cos^{x}\beta+\frac{c^{y}}{c^{z}}\cos^{y}\alpha$$
$$1= \frac{\cos^{x}\beta}{c^{z-x}}+\frac{\cos^{y}\alpha}{c^{z-y}}$$

Последнее равенство выполняется при $x=y=z=2$, если треугольник со сторонами $a,b,c$ - является прямоугольным. (Теорема Пифагора).
Не имеет решения в целых числах при $2<x\leqslant y\leqslant z$ (Обобщённая Теорема Ферма). т.к. в числителях числа меньшие единицы в целочисленной степени большей $2$, а в знаменателях целое число $c\geqslant4$.
Что и требовалось доказать.

 
 
 
 Re: Гипотеза Била (Обобщение ВТФ)
Сообщение04.04.2019, 21:52 
$34^5 + 51^4 = 85^4$
Ищите у себя ошибку.

 
 
 
 Posted automatically
Сообщение04.04.2019, 22:06 
 i  Тема перемещена из форума «Математика (общие вопросы)» в форум «Карантин»
по следующим причинам:

- неправильно набраны формулы (краткие инструкции: «Краткий FAQ по тегу [math]» и видеоролик Как записывать формулы).

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 
 
 
 Posted automatically
Сообщение15.05.2019, 23:53 
 i  Тема перемещена из форума «Карантин» в форум «Пургаторий (М)»

 
 
 
 Re: Обобщение Великой Теоремы Ферма и Теоремы Пифагора
Сообщение16.05.2019, 21:39 
venco, на контрпример не тянет: у ТС условие на степени $z \geqslant \max(x, y)$, а у вас $4 < 5$.

 
 
 
 Re: Обобщение Великой Теоремы Ферма и Теоремы Пифагора
Сообщение16.05.2019, 23:03 
Аватара пользователя
$$\underset{(1)}{2^3+2^3=2^4}$$ контрпример к невеликой и неотеореме (и не-Ферма)

 
 
 
 Re: Обобщение Великой Теоремы Ферма и Теоремы Пифагора
Сообщение17.05.2019, 01:56 
Может быть там подразумевались различные числа $a,b,c$, но и таких контрпримеров море, есть целые огромные бесконечные серии, например:
$x=y,\; 0<d<h,\; c=d^x+h^x,\; a=d \cdot c^k,\; b=h \cdot c^k, \; z=x \cdot k+1, \; k>1$ (все числа натуральные).
Наименьшие примеры для некоторых степеней:
$9^{3}+18^{3}=3^{8}$
$194^{4}+291^{4}=97^{5}$
$550^{5}+825^{5}=275^{6}$
$263169^{9}+526338^{9}=513^{19}$

А вот примеры из других серий:
$8^{4}+4^{6}=2^{13}$
$162^{3}+9^{6}=3^{14}$
$961^{3}+31^{5}=62^{5}$
$9375^{3}+625^{4}=250^{5}$
$2000^{3}+100^{4}=300^{4}$

 
 
 
 Re: Обобщение Великой Теоремы Ферма и Теоремы Пифагора
Сообщение17.05.2019, 02:23 
Dmitriy40 в сообщении #1393544 писал(а):
Может быть там подразумевались различные числа $a,b,c$,
Вроде бы да, но в виде $a\ne b\ne c$. Кажется, это условие не запрещает иметь $a=c$?
А взаимно простые вам не попадались?

 
 
 
 Re: Обобщение Великой Теоремы Ферма и Теоремы Пифагора
Сообщение17.05.2019, 03:43 
rockclimber в сообщении #1393552 писал(а):
Dmitriy40 в сообщении #1393544 писал(а):
Может быть там подразумевались различные числа $a,b,c$,
Вроде бы да, но в виде $a\ne b\ne c$. Кажется, это условие не запрещает иметь $a=c$?
Не запрещает, но это менее интересный вопрос так как решений сильно больше. Ну например $17^{4}+34^{4}=17^{5}$, $217^{6}+282534^{3}=217^{7}$.
rockclimber в сообщении #1393552 писал(а):
А взаимно простые вам не попадались?
Неа, не попадались.
Даже взаимно простые $a$ и $b$ не находятся.

(Код программы)

На всякий случай код PARI/GP:
Код:
c=0; for(x=3,9, for(y=x,9, for(a=1,10^4, if(x==y, s=a+1, s=1); for(b=s,10^4, if(a==b || gcd(a,b)>1, next); cz=a^x+b^y; z=ispower(cz,,&c); if(z>=y && c!=a && c!=b, printf("%u^%u+%u^%u=%u^%u\n", a,x,b,y,c,z))))))
Для снятия условия взаимной простоты удалить кусок "|| gcd(a,b)>1".

 
 
 
 Re: Обобщение Великой Теоремы Ферма и Теоремы Пифагора
Сообщение17.05.2019, 16:39 
Аватара пользователя
rockclimber в сообщении #1393552 писал(а):
А взаимно простые вам не попадались?
Гипотеза Била.

 
 
 
 Re: Обобщение Великой Теоремы Ферма и Теоремы Пифагора
Сообщение17.05.2019, 17:06 
Someone
Спасибо. Видимо, и не попадутся. :mrgreen:

 
 
 
 Re: Обобщение Великой Теоремы Ферма и Теоремы Пифагора
Сообщение18.05.2019, 09:36 
.

 
 
 [ Сообщений: 12 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group