2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Оценка синуса через вогнутость
Сообщение24.03.2019, 05:42 
Аватара пользователя


24/03/19
147
Наткнулся на след. доказательство известной оценки $\sin x > \frac 2\pi x$ при $0 < x < \frac{\pi}2.$

Используется вогнутость синуса. Условие $(\sin x)'' < 0$ выполнено на интервале $(0, \frac{\pi}2),$ поэтому синус вогнут, и его график лежит выше любой хорды. Далее проводится хорда (отрезок с коэф. наклона $\frac2{\pi}$) через $(0,0)$ и $(\frac{\pi}2, 1),$ получается нужная оценка.

Что меня смущает в таком рассуждении. Выпуклость/вогнутость определяются на открытом множестве. Например, здесь функция вогнута на $(0, \frac{\pi}2).$ То есть, условие "график выше хорды" мы можем записать только на хордах внутри этого интервала. Соответственно, аргумент выше $-$ нестрогий, потому что участвуют концевые точки.

Можно ли, используя эту идею, негромоздко построить строгое доказательство?

 Профиль  
                  
 
 Re: Оценка синуса через вогнутость
Сообщение24.03.2019, 14:54 
Заслуженный участник
Аватара пользователя


23/07/05
17975
Москва
Я не понял претензию. У Вас же написано
SiberianSemion в сообщении #1383763 писал(а):
$\sin x > \frac 2\pi x$ при $0 < x < \frac{\pi}2.$
То есть, утверждается, что неравенство выполняется на интервале. Причём тут концевые точки? Вы меете в виду, что хорда проходит через концевые точки? Ну, там где-то должно быть сказано про непрерывность в концевых точках.

 Профиль  
                  
 
 Re: Оценка синуса через вогнутость
Сообщение25.03.2019, 03:17 
Аватара пользователя


24/03/19
147
Someone в сообщении #1383806 писал(а):
Вы меете в виду, что хорда проходит через концевые точки?

Да, в этом претензия. Хорды можно проводить только внутри интервала, и непонятно как это распространить на концы.

Someone в сообщении #1383806 писал(а):
Ну, там где-то должно быть сказано про непрерывность в концевых точках.

Непрерывное изменение хорды, имеется ввиду? В тексте этого нет $-$ текст про другое, автор не стал подробно останавливаться на этом вопросе.

Я сам пытался проводить хорды через точки, близкие к концам: $y = k(x-a) + \sin a,$ где $k = \frac{\sin b -\sin a}{b-a},$ $a \to 0, b \to \frac \pi 2.$ Получилось трудно и с костылями.

 Профиль  
                  
 
 Re: Оценка синуса через вогнутость
Сообщение25.03.2019, 03:20 


20/03/14
12041
SiberianSemion в сообщении #1383763 писал(а):
$\sin x > \frac 2\pi x$ при $0 < x < \frac{\pi}2.$

Мне кажется, или неравенство $\sin x \ge \frac 2\pi x $ на соответствующем отрезке следует из вышеприведенного очевидным образом? что тут особо распространять?

 Профиль  
                  
 
 Re: Оценка синуса через вогнутость
Сообщение25.03.2019, 03:24 
Аватара пользователя


24/03/19
147
Lia в сообщении #1383944 писал(а):
Мне кажется, или неравенство $\sin x \ge \frac 2\pi x $ на соответствующем отрезке следует из вышеприведенного очевидным образом?

Само неравенство $\sin x > \frac 2\pi x$ еще не доказано. Я хочу это доказать внутри интервала.

 Профиль  
                  
 
 Re: Оценка синуса через вогнутость
Сообщение25.03.2019, 03:25 
Заслуженный участник
Аватара пользователя


23/07/05
17975
Москва
SiberianSemion в сообщении #1383943 писал(а):
Непрерывное изменение хорды, имеется ввиду?
Непрерывность функции.

Рассматриваете последовательность хорд, у которых концевые точки монотонно стремятся к концам интервала. Каждая следующая хорда в последовательности ниже предыдущих, поскольку их концы лежат выше этой хорды, значит, неравенство усиливается. Переходите к пределу.

А на наглядном уровне это просто очевидно.

 Профиль  
                  
 
 Re: Оценка синуса через вогнутость
Сообщение25.03.2019, 03:29 
Аватара пользователя


24/03/19
147
Someone в сообщении #1383946 писал(а):
А на наглядном уровне это просто очевидно.

Да.

Someone в сообщении #1383946 писал(а):
Каждая следующая хорда в последовательности ниже предыдущих, поскольку их концы лежат выше этой хорды, значит, неравенство усиливается. Переходите к пределу.

Я это и делал. Получается громоздко.

Видимо, все равно ничего лучше нет. Спасибо за ответ.

 Профиль  
                  
 
 Re: Оценка синуса через вогнутость
Сообщение25.03.2019, 07:08 
Заслуженный участник
Аватара пользователя


23/08/07
5487
Нов-ск
SiberianSemion в сообщении #1383763 писал(а):
Наткнулся на след. доказательство известной оценки $\sin x > \frac 2\pi x$ при $0 < x < \frac{\pi}2.$

Используется вогнутость синуса. Условие $(\sin x)'' < 0$ выполнено на интервале $(0, \frac{\pi}2),$ поэтому синус вогнут, и его график лежит выше любой хорды. Далее проводится хорда (отрезок с коэф. наклона $\frac2{\pi}$) через $(0,0)$ и $(\frac{\pi}2, 1),$ получается нужная оценка.

Что меня смущает в таком рассуждении. Выпуклость/вогнутость определяются на открытом множестве. Например, здесь функция вогнута на $(0, \frac{\pi}2).$ То есть, условие "график выше хорды" мы можем записать только на хордах внутри этого интервала. Соответственно, аргумент выше $-$ нестрогий, потому что участвуют концевые точки.

Можно ли, используя эту идею, негромоздко построить строгое доказательство?

Для любого $x$ из "внутри" проведите хорду "внутри", которая, в свою очередь, выше хорды "через концы".

 Профиль  
                  
 
 Re: Оценка синуса через вогнутость
Сообщение25.03.2019, 07:44 
Заслуженный участник
Аватара пользователя


18/09/14
4984

(Оффтоп)

SiberianSemion в сообщении #1383763 писал(а):
Используется вогнутость синуса. Условие $(\sin x)'' < 0$ выполнено на интервале $(0, \frac{\pi}2),$ поэтому синус вогнут, и его график лежит выше любой хорды.

Насколько я помню, в этом случае говорят о выпуклости функции на отрезке/интервале. Вогнутость - это ровно наоборот.

 Профиль  
                  
 
 Re: Оценка синуса через вогнутость
Сообщение25.03.2019, 08:21 
Заслуженный участник
Аватара пользователя


21/12/05
5931
Новосибирск

(Оффтоп)

Да вроде нет, я знаю такое определение: функция выпукла (вниз), если её надграфик является выпуклым множеством, в частности если вторая производная неотрицательна.

 Профиль  
                  
 
 Re: Оценка синуса через вогнутость
Сообщение25.03.2019, 12:04 
Заслуженный участник
Аватара пользователя


23/07/05
17975
Москва

(Оффтоп)

В разной литературе можно встретить прямо противоположное употребление терминов "выпуклая функция" и "вогнутая функция". Поэтому я всегда употреблял слова "выпуклая вниз" и "выпуклая вниз".

 Профиль  
                  
 
 Re: Оценка синуса через вогнутость
Сообщение25.03.2019, 12:10 
Заслуженный участник
Аватара пользователя


21/12/05
5931
Новосибирск

(Оффтоп)

Мне тоже казалось, что я встречал прямо противоположное, но было это так давно, что мне стало казаться, что мне это только казалось.

 Профиль  
                  
 
 Re: Оценка синуса через вогнутость
Сообщение25.03.2019, 12:13 
Заслуженный участник
Аватара пользователя


23/08/07
5487
Нов-ск
Someone в сообщении #1384013 писал(а):

(Оффтоп)

В разной литературе можно встретить прямо противоположное употребление терминов "выпуклая функция" и "вогнутая функция". Поэтому я всегда употреблял слова "выпуклая вниз" и "выпуклая вниз".

(Оффтоп)

Для наглядности говорю "выгнутая вверх" и "выгнутая вниз", одновременно в нужную сторону выгибая мелом линию на доске.

 Профиль  
                  
 
 Re: Оценка синуса через вогнутость
Сообщение26.03.2019, 01:43 
Аватара пользователя


24/03/19
147

(Оффтоп)

Эта двусмысленность $-$ как она удобна, однако! Говоришь своему проницательному коллеге "выпуклость" или "вогнутость", а он сразу же представляет в голове правильный случай и понимает, что вы имели в виду. В случае чего, ему не придется делать замечаний, что вы ошиблись, потому что термин итак неоднозначен.

Если же коллега не такой проницательный, то он не будет затуманивать мысли мелкими деталями, думая выпуклость "вверх" или "вниз". Он просто поймет, что вы говорите об идеях, связанных с выпуклостью и прочая.

Двусмысленные термины $-$ основа основ конструктивного диалога!

 Профиль  
                  
 
 Re: Оценка синуса через вогнутость
Сообщение26.03.2019, 02:08 
Заслуженный участник


27/04/09
28128

(Оффтоп)

SiberianSemion
Ваши претензии относятся не туда. Проблема с терминами «выпуклость функции» в том, что иметь краткое имя для подобного свойства функции полезно, но именно выпуклость — это «изначально» свойство множества, в данном случае куска надграфика или подграфика функции, и выбор ни одного из них особо не более естественен, что породило неустойчивую в общем терминологию. Выделенное важно, потому что действительно в конкретных-то местах всё практически всегда оговаривается. Форум, однако, не учебник и не справочник с общей линией повествования, и тут заранее на все случаи не договоришься. Но заранее и не обязательно. Так что вы написали эмоциональный неконструктивный пост.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 15 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: dgwuqtj, mihaild


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group