2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Точная последовательность модулей
Сообщение19.03.2019, 03:47 
Аватара пользователя


08/07/15
127
🔔
Здравствуйте.
Мне нужно доказать, что модуль $P$ проективен тогда и только тогда, когда всякая точная последовательность $0 \to M' \to M \to P \to 0$ расщепляется.
Перед этим я доказал, что такая последовательность расщепима, когда выполняется одно из двух эквивалентных условий: есть правая обратная стрелка из $P$ в $M$; есть левая обратная стрелка из $M$ в $M'$. И доказал эквивалентность этих условий.

Далее, пусть модуль $P$ проективен. Построим коммутативную диаграмму:

$\xymatrix{& P \ar[dl]_h \ar[d]^{1_p} \\ M \ar[r]_{g} & p \ar[r] & 0}$

где $h$ существует по проективности модуля. $gh(x)=x$, поэтому $h$ - правая обратная стрелка для $g$ и последовательность расщепима.

Теперь из расщепимости всякой такой последовательности нужно вывести проективность модуля. У меня не выходит. Конечно, думал "перенести" последовательность на диаграмму и воспользоватьсч существованием обратной стрелки. Но для этого что-то должно бить в $P$. Хотел построить композицию $M \to P \to M'$, но встаёт вопрос о произвольности такого гомоморфизма (сюръективного) из $M$ в $M'$. Может, я весьма туплю, но не увидел решения.

 Профиль  
                  
 
 Re: Точная последовательность модулей
Сообщение19.03.2019, 12:21 
Заслуженный участник


18/01/15
3258
Вот одно из возможных решений (есть и другое).

1) Покажите, что регулярный модуль (т.е. само кольцо, рассматриваемое как левый модуль над собой) проективен.

2) Пусть $M=\oplus_{i\in I}M_i$ --- прямая сумма произвольного (возможно бесконечного) семейства модулей. Тогда $M$ проективен тогда и только тогда, когда все слагаемые проективны.
(А знаете те ли, чем отличаются прямая сумма и прямое произведение ?)

3) Любой свободный модуль проективен.

4) Любой модуль --- фактормодуль подходящего свободного.

5) Наконец, выведите нужное утверждение.

 Профиль  
                  
 
 Re: Точная последовательность модулей
Сообщение19.03.2019, 15:23 
Аватара пользователя


08/07/15
127
vpb в сообщении #1382855 писал(а):
1) Покажите, что регулярный модуль (т.е. само кольцо, рассматриваемое как левый модуль над собой) проективен.

2) Пусть $M=\oplus_{i\in I}M_i$ --- прямая сумма произвольного (возможно бесконечного) семейства модулей. Тогда $M$ проективен тогда и только тогда, когда все слагаемые проективны.
(А знаете те ли, чем отличаются прямая сумма и прямое произведение ?)

3) Любой свободный модуль проективен.

4) Любой модуль --- фактормодуль подходящего свободного.
Хм, интересно, что эти и некоторые другие задачи я уже прорешал до рассматриваемой. И ещё я решил такую задачу: доказать, что модуль $P$ проективен титтк существует такой модуль $M$, что $P \oplus M$ свободен.

Теперь я решил задачу, которую запостил. И решение в свете вышесказанного очевидно. Видимо, я просто засмотрелся вчера ночью на коммутативные диаграммы. У меня как бы "графические" идеи в голове крутились, и я занимался рисованием)
В общем, спасибо.

Пусть $P$ - образ свободного модуля $M$ при гомоморфизме $f$. Имеем точную последовательность модулей: $0 \to \mathrm{\ker} f =M' \to M \to P \to 0$. Раз она расщепляется, то $M = M' \oplus P$. Откуда по приведённому выше утверждению получаем, что $P$ - проективен.

vpb в сообщении #1382855 писал(а):
А знаете те ли, чем отличаются прямая сумма и прямое произведение ?
Ну, конечно :-)
Я могу по-разному ответить. Во-первых, есть категорные понятия произведения и копроизведения. Первый объект в известном смысле конечный, а второй в известном смысле - начальный. Прямое произведение модулей - это произведение, прямая сумма - это копроизведение. Ленг обычно вводит универсальные объекты категорно, а потом доказывает существование. Мне такой его подход нравится. Это даёт видеть общую картину. Г.Б. Шабат, читающий сейчас алгебру в НМУ, в этом смысле идёт даже дальше Ленга.

Во-вторых, во многих случаях это и не важно, а важны явные конструкции. Ну, прямую сумму можно построить как прямое произведение, где в каждом элементе почти все члены нулевые. Удобно мыслить как мн-во всех линейных комбинаций элементов модулей, единственным образом порождающих модуль-прямую сумму.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 3 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: BVR


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group