Задача, иллюстрирующая принцип математической индукции:
Докажите, что квадрат можно разрезать на 6, 8, 9 квадратов. На какое еще число квадратов можно разрезать квадрат?
Ответ: на любое число, отличное от 2, 3 и 5. Действительно не трудно разрезать квадрат на 6, 8, 9 квадратов, а разрезать его на 7 совсем просто: достаточно в исходном квадрате, а затем в его четвертинке нарисовать "крестик"(рисунок). Это и есть основная идея - подрисовать крестик, увеличив количество квадратов на 3. Следовательно, раз мы смогли разрезать квадрат на 6 квадратов, то сможем разрезать его на 9, на 12, на 15 квадратов, и так далее. Разрезав квадрат на 4 квадрата, мы далее сможем получить разрезания на: 7, 10, 13, и так далее квадратов. Наконец, мы сможем разрезать его на 8, 11, 14, ... квадратов. Таким образом, добавляя тройку нужное число раз, мы из чисел 6, 7 и 8 можем получить любое натуральное число, большее 5. Конечно, остается доказать, что квадрат невозможно разрезать на 5 квадратов(ясно, что его нельзя разрезать как на 2, так и на 3 квадрата).
Приводится рисунок:
В ответе утверждается, что разрезать квадрат на 6, 8 квадратов легко, но не приводится рисунок. А как разрезать квадрат на 6 или 8 квадратов? Подскажите, пожалуйста!
Чтобы в результате разрезания получались квадраты, то обе стороны квадрата нужно делить на одинаковое число отрезков.
Например, если каждую из сторон квадрата поделить на два отрезка, а потом разрезать, то получим 4 квадрата.
А если поделить стороны на 3 отрезка, то поулчим 9 квадратов.
6, 8 квадратов как получить?