Еще ТФКП совершенно обязательно.
Существует целый набор предметов, которые в одних ВУЗах читаются как отдельные, в других - под общим названием типа "
Дополнительные главы мат. анализа". Границы между ними и между собственно анализом бывают проведены по-разному. Например:
(кат)
- ряды числовые и степенные;
- ряды Фурье (тригонометрические), интеграл Фурье = преобразование Фурье, преобразование Лапласа;
- функции комплексной переменной;
- вариационное исчисление;
- численные методы (могут читаться расширенно как несколько предметов);
- теория вероятностей и математическая статистика (могут читаться расширенно как несколько предметов).
Кроме того, "вширь и вглубь" могут быть даны предметы, выходящие за рамки уже дифференциальных уравнений и ДУЧП:
(кат)
- функциональный анализ;
- динамические системы;
- дифференциальная геометрия;
- интегральные уравнения;
и т. д.
Я не стал углубляться в эти уточнения.
Урматы, помнится, не читали (точнее какие-то совсем убогие обрывки). Но от них нужен в основном довольно самоочевидный (если идею подсказать) метод Фурье.
Я бы сказал, на каком-то этапе для понимания
ЛЛ-2 и
ЛЛ-3 понадобится понимание метода функций Грина. Ну и общая идеология начальных и граничных задач.
-- 27.02.2019 13:28:35 --В догонку к этой книге рекомендую книгу её переводчика и ученика А.Б.Мигдала - В.П. Крайнов, А.Б Мигдал. Приближённые методы квантовой механики
Главный автор этой книги всё-таки Мигдал. И главное, эта книга - первое издание, 1966, а в 1975 вышло второе издание
Мигдал. Качественные методы в квантовой теории.расширенное по объёму примерно в два раза. И по толщине: 335 страниц против 152, и по оглавлению: 6 глав против 3 (первые 3 совпадают).