2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Задача про выступающих
Сообщение30.01.2019, 18:23 
Помогите, пожалуйста ,решить задачу
В списке выступающих на заседании 6 человек. Сколько существует вариантов регламента заседания, если известно, что выступающий А должен выступить раньше В и С?
Мой ход решения: Общее количество способов составить регламент из 6 человек будет равно $6!$ Из общего количества мы вычитаем количество способов расстановки, при которых выступающий А будет находиться либо после выступающего В, либо после выступающего С. Получаем $6!-2 \cdot5!=480$, но в ответе полученное мной число еще делится пополам. Объясните, пожалуйста, зачем это деление пополам?

 
 
 
 Posted automatically
Сообщение30.01.2019, 18:44 
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Карантин»
по следующим причинам:

- отсутствуют собственные содержательные попытки решения задач(и).

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 
 
 
 Posted automatically
Сообщение30.01.2019, 20:44 
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»

 
 
 
 Re: Задача про выступающих
Сообщение30.01.2019, 20:48 
Аватара пользователя
Daylikor в сообщении #1372949 писал(а):
количество способов расстановки, при которых выступающий А будет находиться либо после выступающего В, либо после выступающего С
А как вы это число способов считаете?

 
 
 
 Re: Задача про выступающих
Сообщение31.01.2019, 00:57 
После получения общего числа перестановок ($6!$) попробуйте подумать, сколько существует вариантов взаимного расположения только трех выступающих и какая часть из них удовлетворяет условию.

 
 
 [ Сообщений: 5 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group