В книге Greiner, Reinhardt "Quantum electrodinamix" на стр. 273 около рис. 5.8. (a,b) говорится, что вклады несвязных диаграмм при вычислении
выносятся:
а раз несвязные диаграммы присутствуют даже в отсутствии "внешних" частиц, то значит, они соответствуют неустранимому вакуумному фону и потому
- фазовый множитель с единичным модулем, значит, при вычислении элементов S-матрицы несвязные диаграммы можно отбросить. Но это - так себе объяснение, на самом деле, а вдруг
и всё рушится? В связи с этим вопрос:
1. Пескин и Шредер в этой же ситуации рассуждают по-другому: они пишут, что в теории возмущения для элементов S-матрицы нужно идти тем же путём, что и при вычислении двухточечной корреляционной функции(4.31), однако между (4.89) и (4.90) отмечают, что "при вычислении (4.31) множители между свободными и взаимодействующими вакуумными состояниями сократились, а здесь такое сокращение тоже происходит, однако в таком подходе получить его не так просто" и предлагают читателю уверовать в (4.90) до главы 7.2(редукционная формула Лемана-Симанчика-Циммермана, я, к сожалению, из-за труднопроходимости Пескина и Шредера ещё не добрался до этого вопроса).
Нету ли книги, в которой, несмотря на "непростоту" эти вопросы в каноническом квантовании излагаются последовательно, без недомолвок, как у Грайнера или "прыжков" на 3 главы вперёд, как у Пескина?