2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4
 
 Re: Гравитационная масса движущейся материальной частицы, ч. сл.
Сообщение24.01.2019, 20:02 
Аватара пользователя
schekn, хотя возможно это я Вас не правильно понял. Я подумал, что Ваш вопрос относится к моему решению в сообщении #1369053. А Ваш вопрос, скорее всего, относится к моему сообщению #1370044. Если так, то там метрика вообще не меняется:
SergeyGubanov в сообщении #1370044 писал(а):
$$
\left( \tilde{e}^{(0)} \right)^2
- \left( \tilde{e}^{(1)} \right)^2 - \left( \tilde{e}^{(2)} \right)^2 - \left( \tilde{e}^{(3)} \right)^2
=
\left( e^{(0)} \right)^2
- \left( e^{(1)} \right)^2 - \left( e^{(2)} \right)^2 - \left( e^{(3)} \right)^2
$$ Преобразования Лоренца не меняют метрику пространства-времени, они меняют репер (корепер).

 
 
 
 Re: Гравитационная масса движущейся материальной частицы, ч. сл.
Сообщение27.01.2019, 11:39 
Аватара пользователя
SergeyGubanov в сообщении #1371498 писал(а):
schekn, хотя возможно это я Вас не правильно понял. Я подумал, что Ваш вопрос относится к моему решению в сообщении #1369053
.

Нет, именно к этому решению. Я может туплю, но не понимаю, как координатным преобразованием перейти от вашего решения к классическому Пенлеве. Но я не проверял, равен ли тензор Риччи нулю.

 
 
 
 Re: Гравитационная масса движущейся материальной частицы, ч. сл.
Сообщение28.01.2019, 09:43 
Аватара пользователя
schekn в сообщении #1372207 писал(а):
Я может туплю, но не понимаю, как координатным преобразованием перейти от вашего решения к классическому Пенлеве.
Сначала переписать метрику Пэнлеве в цилиндрических координатах $(t, r, \theta, \varphi) \; \to \; (t, \rho, z, \varphi)$, затем заменить $z \to z - z_0(t)$.

 
 
 [ Сообщений: 48 ]  На страницу Пред.  1, 2, 3, 4


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group