2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Числа в ряд и целое число процентов
Сообщение11.01.2019, 17:58 
Заслуженный участник
Аватара пользователя


16/07/14
9216
Цюрих
wrest в сообщении #1367793 писал(а):
А что там надо в качестве исходных данных?
Где? В MIP (mix integere programming)? Набор переменный и линейных неравенств:)

 Профиль  
                  
 
 Re: Числа в ряд и целое число процентов
Сообщение11.01.2019, 18:01 


05/09/16
12128
mihaild в сообщении #1367795 писал(а):
Где? В MIP (mix integere programming)? Набор переменный и линейных неравенств:)

А, я думал это какая-то "математика", "студия" или типа того...
Сгенерировать связи-то в каком-то нужном текстовом виде можно легко.

-- 11.01.2019, 18:23 --

На сайте http://mathworld.wolfram.com/LongestPathProblem.html написано
Цитата:
The longest path problem asks to find a path of maximum length in a given graph. The problem is NP-complete.
Такшта, кажись задаче конец. :mrgreen:

 Профиль  
                  
 
 Re: Числа в ряд и целое число процентов
Сообщение11.01.2019, 18:27 
Заслуженный участник
Аватара пользователя


16/07/14
9216
Цюрих
Тут всего сотня вершин и полторы тысячи ребер, так что вполне возможно что можно решить. Плюс граф всё же сильно не произвольный.

 Профиль  
                  
 
 Re: Числа в ряд и целое число процентов
Сообщение11.01.2019, 18:30 


05/09/16
12128
mihaild в сообщении #1367799 писал(а):
Тут всего сотня вершин и полторы тысячи ребер, так что вполне возможно что можно решить. Плюс граф всё же сильно не произвольный.

Ну может. У меня нету вольфрама десктопного или других матпакетов с солверами длиннейших путей в графах, так что я - пас.

 Профиль  
                  
 
 Re: Числа в ряд и целое число процентов
Сообщение14.01.2019, 15:53 


05/09/16
12128
Пока думаю как-нибудь случайным образом потыкаться, вот для медитации сделал картинку.
Матрица 100х100, на пересечении строки-столбца единица покрашенная красным если числа могут быть соседями и ноль не покрашенный, если не могут.
Изображение

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 20 ]  На страницу Пред.  1, 2

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group