Если произведение этих чисел - квадрат, то среди них найдутся либо два квадрата, либо два удвоенные квадрата, либо два утроенные квадрата. А неравенство
, тем более
и т.д в натуральных числах ограничено.
Если некоторое число взаимнопростое и с 3, и с 5, и с 7, то оно должно быть либо квадрат, либо удвоенный квадрат.
Если таких чисел три, то два из них будут одного вида. Допустим, таких чисел только два - одно квадрат, другое - удвоенный квадрат. Это возможно только если ровно четыре из чисел делятся на 3,
другие две делятся на 5 и
другие две делятся на 7. (остальные две квадрат и удвоенный квадрат). Рассмотрим те, которые делятся на 3. Среди них ровно две - нечетные. Взаимнопростые и с 2, и с 5, и с 7. Они могут быть либо квадрат, либо утроенный квадрат...