Для свободного электрона можете термин "импульс" считать синонимом слова "скорость". Во всех физических эффектах, в которых скорость электрона важна в каком-то смысле, она оказывается неопределённой после измерения положения электрона, причём, чем точнее вы измерили координату, тем размытее в пространстве скоростей оказывается его скорость.
Например, у вас примерно горизонтально летит электрон. Вы хотите измерить его некоторую среднюю (в классическом смысле!) вертикальную скорость на участке его траектории. Для этого вы дважды измеряете его вертикальную координату через какой-то промежуток времени. Делите разность полученных координат на пролётное время, и думаете, что измерили одновременно и вертикальную координату, и вертикальную скорость электрона. Вот только когда вы начинаете повторять этот опыт многократно, у вас неизбежно возникает сложность. Второй детектор может измерять координату сколь угодно точно, вы каждый раз получаете ровно одну точку. Но точки от различных электронов оказываются как-то рассыпаны по рабочей области этого детектора, причём, после достижения некоторой точности, эффект повышения точности измерительного оборудования становится противоположным: чем точнее вы измеряете координату пролетевшего электрона первым детектором (а это может быть просто вертикальная щель, выделяющая из потока электронов только те электроны, координаты которых находятся в заданном диапазоне), тем больше оказывается разброс точек, получаемых вторым детектором. То есть, чтобы повысить точность измерения скорости, вы пытались уменьшить погрешность измерения первой координаты, и такой подход работал поначалу, но он работал только до тех пор, пока вы не упёрлись в соотношение неопределённости Гейзенберга. Ситуация с классической точки зрения совершенно парадоксальная.
realeugene, как я понял, уже тем, что мы измерили в первый раз положение электрона, мы "вмешались" в его жизнь, и при получении некоторой определенности на первом детекторе, он "решил": "все, с меня хватит! теперь делаю, что хочу"
Я хочу сказать, что первым детектором мы как бы изменили его волновую функцию, и теперь в дальнейших измерениях ее вероятности поменялись таким образом, что как бы нам того не хотелось, мы не сможем получить действительно определенный ответ (и он будет тем неопределеннее, чем он был определеннее в момент первого измерения), да?