Порешайте задачи типа

Хорошо порешайте, графически, увидьте там прямые, точку пересечения. Разберите возможные решения только одного, например, первого уравнения. Поймите, почему именно прямая образовалась. Поменяте условие. Ведь если 2 свиньи и 3 коровы стоят 5100 руб., то 4 свиньи и 6 коров наверняка стоят 10200 руб.. И если в задаче

10200 заменить на, скажем, 10000, то таких свиней-коров-цен-чисел просто не может быть! И как тогда трактовать точку пересечения прямых, которая дала нам решение в первой задачке? И что будет, если оставить 10200 руб., не признаваясь, откуда взялось это число, и что таким уравением мы никакой новой информации в задачу на самом деле не добавили? Как поведут себя прямые и точка их пересечения?
Хорошо порешайте, прежде чам добавить третью координату, например, баранов, и третье уравнение.
Прямые превратятся в плоскости, две плоскости в пересечении дадут прямую, а в пересечении с третьей плоскостью (с третьим уравнением, если угодно) --- искомую точку. Хорошо порешайте, посмотрите разнообразие вариантов --- две плоскости параллельны, все параллельны, никакие не параллельны. Надо решать и рисовать, или ещё как-то конструировать --- гвоздики в стол вбивать, плоскости из тряпочек натягивать...
Работы много, но зато с добавлением в задачу козочек переход в 4-х мерное пространство с параллельными или непараллельными гиперплоскостями будет простым. Дальше --- слоники, жирафы, --- на Ваш вкус.
Но без труда не выловишь рыбку из пруда.
Решить системы я могу без проблем. А график это просто две прямые- одна медленно-медленно убывает другая медленно-медленно возрастает и наконец они пересекаются в точке
. Насчет того, чтобы заменить 10200 на 10000, то тогда если из второго уравнения отнять первое, то получится