Я не думаю, что теорема Жордана тут прямо так вот и подходит. Не могли бы намекнуть, как Вы видите её применение в задаче?
Ну разумеется не прямо так, но можно посмотреть внутреннюю часть границы одной ленточки и добавить к ней кусок границы диска, чтобы получилась замкнутая кривая. Если есть ленточка, с ней перекрещивающаяся, то у второй ленточки есть точки как внутри вышеописанной кривой, так и вне. Следовательно, где-то будет пересечена кривая.
Это рассуждение можно записать более аккуратно, если более аккуратно поставить исходную задачу.
-- Сб, 13 окт 2018 17:39:21 --Да, а то, что в случае отсутствия перекручиваний можно вырезать -- доказывается, например, по индукции. Сначала берёте одну ленточку, внутри которой нет другой ленточки, и описываете явно, как будете её вырезать (можно даже формулу написать). Потом можно сказать, что если из плоскости выкинуть исходный диск, ленточку, и оставить только неограниченную связную компоненту, то она будет гомеоморфна плоскости с выкинутым диском, поэтому можно повторить рассуждение для следующей ленточки.