2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Самый сильный боксёр
Сообщение04.10.2018, 20:34 
Аватара пользователя
Нет, это не про киевского мэра.
В общем, несколько боксёров провели однокруговой турнир. Боксёр $x$ считается сильнее боксёра $y$ если либо $x$ выиграл у $y$, либо $x$ выиграл у кого-то, выигрывшего у $y$.
Боксёр считается сильнее всех, если он сильнее каждого из остальных участников турнира.

а) Доказать, что найдётся боксёр, который сильнее всех.

б) Доказать, что боксёр, набравший не меньше очков, чем каждый из остальных, сильнее всех.

 
 
 
 Re: Самый сильный боксёр
Сообщение04.10.2018, 20:47 
Двое боксеров могут быть сильнее друг друга?

 
 
 
 Re: Самый сильный боксёр
Сообщение04.10.2018, 21:14 
Аватара пользователя
Наверное, "сильнее" на самом деле означает "не слабее". Если три боксёра выиграют по кругу и наберут по 2 очка, то каждый будет сильнее всех. Ориентированный граф на ринге. Индукцией его разъяснить.

 
 
 
 Re: Самый сильный боксёр
Сообщение04.10.2018, 22:00 
Аватара пользователя
б) Если $x$ не сильнее $y$, то $y$ выиграл у всех, у кого выиграл $x$, и еще у самого $x$ - так что $y$ набрал больше очков, чем $x$. Так что тот, у кого не меньше очков, чем у любого другого, сильнее любого другого.
а) Следует из б.

Вообще забавная задачка, я уже начал число компонент сильной связности пытаться оценить зачем-то.

 
 
 
 Re: Самый сильный боксёр
Сообщение04.10.2018, 22:10 
Аватара пользователя
Забавно и то, что сильнее всех может быть тот, у кого меньше всех очков (только одна победа). Как-то уж очень забавно. Есть ли аналогии в большом спорте?

 
 
 
 Re: Самый сильный боксёр
Сообщение04.10.2018, 22:42 
Боксеры "камень", "ножницы" и "бумага" провели круговой турнир :mrgreen: :facepalm:
Затеп к ним присоединились боксеры "ящерица" и "спок" и провели еще один турнир.
Превосходство (в нашем случае - боксеров) же не транзитивно, такшта...

 
 
 
 Re: Самый сильный боксёр
Сообщение04.10.2018, 23:10 
Аватара пользователя
kotenok gav в сообщении #1343677 писал(а):
Двое боксеров могут быть сильнее друг друга?

А почему бы и нет? Например, А выиграл у Б, Б выиграл у В, а В выиграл у А. Тогда А сильнее Б (поскольку выиграл у него), но и Б сильнее А (поскольку выиграл у В, который выиграл у А).

-- 04.10.2018, 23:11 --

Поначалу у меня произошла очитка:

Цитата:
Двое боксеров могут бить сильнее друг друга?


-- 04.10.2018, 23:13 --

(Оффтоп)

«Разумеется! Причём чем сильнее, тем лучше», — сказал зубной врач.

 
 
 
 Re: Самый сильный боксёр
Сообщение04.10.2018, 23:18 
Ktina в сообщении #1343675 писал(а):
Доказать, что боксёр, набравший не меньше очков, чем каждый из остальных, сильнее всех.

Каких-таких очков? Про очки ничего нет в условии.

 
 
 
 Re: Самый сильный боксёр
Сообщение04.10.2018, 23:26 
Аватара пользователя
wrest в сообщении #1343702 писал(а):
Ktina в сообщении #1343675 писал(а):
Доказать, что боксёр, набравший не меньше очков, чем каждый из остальных, сильнее всех.

Каких-таких очков? Про очки ничего нет в условии.

Обычно под круговым турниром подразумевается, что каждый сыграл с каждым из остальных ровно один раз и за победу начисляется определённое количество очков. Ничьих в боксе, насколько мне известно, не бывает. Вернее, в дворовых поединках иногда и бывают, но в официальных правилах бокса, по-моему, ничья не предусмотрена.

 
 
 
 Re: Самый сильный боксёр
Сообщение04.10.2018, 23:54 
Аватара пользователя

(боксер и очки)

Изображение

 
 
 
 Re: Самый сильный боксёр
Сообщение05.10.2018, 08:17 
Ktina в сообщении #1343706 писал(а):
Ничьих в боксе, насколько мне известно, не бывает.

Могут быть и ничьи.

 
 
 [ Сообщений: 11 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group