2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Зорич, множества и операции над множествами
Сообщение02.10.2018, 01:05 


27/09/18
3
Всем привет. Начал изучать Зорича, на одном из упражнений возник вопрос:
Покажите, что $A \cup (B \cup C) = (A \cup B) \cup C =: A \cup B \cup C$
Что значит данное выражение? Получается, что нужно доказать два утверждения: $A \cup (B \cup C) \Leftrightarrow A \cup B \cup C$ и $(A \cup B) \cup C \Leftrightarrow A \cup B \cup C$?

 Профиль  
                  
 
 Re: Зорич, множества и операции над множествами
Сообщение02.10.2018, 01:10 
Заслуженный участник


09/05/13
8904
∞⠀⠀⠀⠀
Это выражение значит, что два множества совпадают между собой (что нужно показать) и обозначается получившееся $A\cup B\cup C$.
Что означает, что два множества совпадают (равны), в Зориче написано.

 Профиль  
                  
 
 Re: Зорич, множества и операции над множествами
Сообщение02.10.2018, 01:46 


27/09/18
3
Otta
Получается, нужно доказать, что $(((A \cup (B \cup C)) \subset ((A \cup B) \cup C)) \wedge ((A \cup B) \cup C) \subset (A \cup (B \cup C))) \Leftrightarrow (A \cup B \cup C)$?

 Профиль  
                  
 
 Re: Зорич, множества и операции над множествами
Сообщение02.10.2018, 02:01 
Заслуженный участник


09/05/13
8904
∞⠀⠀⠀⠀
aminought в сообщении #1343134 писал(а):
$(((A \cup (B \cup C)) \subset ((A \cup B) \cup C)) \wedge ((A \cup B) \cup C) \subset (A \cup (B \cup C))) \Leftrightarrow (A \cup B \cup C)$?

Вы отдаете себе отчет, зачем пишете вот этот хвост после стрелки в две стороны? Попробуйте почитать это. Это очень полезно - просто почитать.
"Мне надо показать, что множество (1) лежит в множестве (2), и множество (2) лежит в множестве (1)... " до этого места и все нормально и звучит по-русски. А дальше? если и только если множество (3)? а глаголов не будет?

И что Вы собираетесь доказывать, конкретно?

 Профиль  
                  
 
 Re: Зорич, множества и операции над множествами
Сообщение02.10.2018, 02:15 


27/09/18
3
Otta
Я вас понял, однако не совсем понимаю, что нужно добавить. Мое предположение:
$(((A \cup (B \cup C)) \subset ((A \cup B) \cup C)) \wedge ((A \cup B) \cup C) \subset (A \cup (B \cup C))) \Leftrightarrow \forall x (x \in A \vee x \in B \vee x \in C)$
Ход мыслей хотя бы верный?

 Профиль  
                  
 
 Re: Зорич, множества и операции над множествами
Сообщение02.10.2018, 02:22 
Заслуженный участник


09/05/13
8904
∞⠀⠀⠀⠀
Не надо ничего добавлять.
Otta в сообщении #1343129 писал(а):
Это выражение значит, что два множества совпадают между собой (что нужно показать) и обозначается получившееся $A\cup B\cup C$.

Вы доказываете, что первые два множества совпадают. Почему бы их не обозначить одинаково. Вот и обозначили. Это стандартное обозначение, и тут оно вводится.
Знак типа оператора присваивания в Паскале читается как "равно по определению".
Равенство по определению не доказывают, это же определение. Но определение должно быть корректным, чтобы одинаково не обозначить разные множества.

Т.о., все, что Вам нужно доказать, Вы уже написали:
aminought в сообщении #1343134 писал(а):
$(((A \cup (B \cup C)) \subset ((A \cup B) \cup C)) \wedge ((A \cup B) \cup C) \subset (A \cup (B \cup C)))$?

Остальное выбросьте.

 Профиль  
                  
 
 Re: Зорич, множества и операции над множествами
Сообщение02.10.2018, 02:24 
Заслуженный участник
Аватара пользователя


23/07/05
18013
Москва
aminought в сообщении #1343139 писал(а):
Ход мыслей хотя бы верный?
Нет.
Вообще, значок "$:=$" часто иногда используется в смысле "равно по определению".
Запись
aminought в сообщении #1343127 писал(а):
$A \cup (B \cup C) = (A \cup B) \cup C =: A \cup B \cup C$
выглядит очень странно. Это явная попытка совместить некое утверждение с определением. Я бы расшифровал это так:
1) докажем, что $(A\cup B)\cup C=A\cup(B\cup C)$;
2) это равенство позволяет при записи объединения трёх множеств не указывать скобки, так как от их расстановки результат не зависит.

 Профиль  
                  
 
 Re: Зорич, множества и операции над множествами
Сообщение02.10.2018, 02:24 
Заслуженный участник
Аватара пользователя


22/01/11
2641
СПб
aminought в сообщении #1343127 писал(а):
Покажите, что $A \cup (B \cup C) = (A \cup B) \cup C =: A \cup B \cup C$

Вам множество $A \cup B \cup C$ вообще трогать не надо. Оно в этой строчке определяется: после того, как доказано равенство $A \cup (B \cup C) = (A \cup B) \cup C$, можно правую и левую записывать, опуская скобки.

-- Вт окт 02, 2018 02:25:17 --

продублировал, но не страшно)

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 8 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group