2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Заморочное уравнение уравнение в натуральных числах
Сообщение30.09.2018, 14:49 
Аватара пользователя


01/12/11

8634
Решить в натуральных числах уравнение
$$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{GCD(x,y)}+\dfrac{1}{LCM(x,y)}=1$$

GCD - это наибольший общий делитель, а LCM - наименьшее общее кратное.

 Профиль  
                  
 
 Re: Заморочное уравнение уравнение в натуральных числах
Сообщение30.09.2018, 17:10 


07/06/17
1314
$x=y=4$
И, вроде, других решений нет.
Взаимно простые отбрасываем сразу, т.к. сумма будет больше $1$.
Из общих соображений: сколько существует способов представить $1$ в виде суммы аликвотных дробей? Причём сумма должна состоять ровно из $4$ слагаемых.
Отталкиваемся от $\frac{1}{2}+\frac{1}{2}$, пытаемся каждую половинку разложить на сумму меньших. Сразу получаем $\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$, и дальше две суммы:
$\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}$ (подходит) и
$\frac{1}{4}+\frac{1}{4}+\frac{1}{3}+\frac{1}{6}$ (не подходит).
В остальных случаях, если не путаю, число слагаемых будет больше $4$.

 Профиль  
                  
 
 Re: Заморочное уравнение уравнение в натуральных числах
Сообщение30.09.2018, 17:25 
Аватара пользователя


20/07/18
103

(Ответ)

$(4;4), (3; 6), (4; 6)$

(Решение)

Запишем эквивалентное $x+y+nod+nok=xy$
Если числа взаимопростые - лср>пср.
Если нет, то $nod+x$ делится на y и $nod+y$ делится на x.
Это возможно только при $(t, t), (t; 2t), (2t; 3t)$ (следует из решения системы)
Решения находятся подстановкой.

 Профиль  
                  
 
 Re: Заморочное уравнение уравнение в натуральных числах
Сообщение30.09.2018, 17:27 


16/06/10
199
Booker48 в сообщении #1342632 писал(а):
$x=y=4$
Неверно, т.к. $GCD(4,4)=2$

После замены $x=k m, y=k n$ имеем $$\dfrac{m+n+1}{m n}=k-1.$$Левая часть целая при $(m,n)=(1,2),(2,3)$, соответственно решения $(x,y)=(3,6),(4,6)$.

Добавлено позже:
При $m=n=1$ левая часть также целая.

 Профиль  
                  
 
 Re: Заморочное уравнение уравнение в натуральных числах
Сообщение30.09.2018, 17:36 


07/06/17
1314
lim0n в сообщении #1342643 писал(а):
Неверно, т.к. $GCD(4,4)=2$

Как это? Наибольший общий делитель? Чего-то я не понимаю.
Но $(3, 6)$ и $(4, 6)$ действительно, проморгал. :facepalm:

 Профиль  
                  
 
 Re: Заморочное уравнение уравнение в натуральных числах
Сообщение30.09.2018, 17:40 


16/06/10
199
Booker48 в сообщении #1342649 писал(а):
lim0n в сообщении #1342643 писал(а):
Неверно, т.к. $GCD(4,4)=2$

Как это? Наибольший общий делитель? Чего-то я не понимаю.

Вы правы, что-то замкнуло…

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 6 ] 

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Mihaylo


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group