В теме про летающий волчок
topic97216.htmlуже обсуждался вопрос об устойчивости точеченого заряда в какой-то малой окрестности пространства с электростатичесим полем.
Я предлагаю здесь обсудить поведение потенциала в окрестности центра правильних многогранников, если в их вершины поместить одинаковые положительные точечные заряды.
Мне уже встречалась задача для ситуации с Гексаэдром (кубом).
В ней доказывается, что по направлению к вершинам потенциал возрастает, а по направлению к центрам граней убывает. То есть уже у случае куба получается некая пространственная розочка. Пока непонятно, как себя ведет потенциал в направлении к центрам ребер.
Можно для определенности поместить центр куба в начало координат, а его ребра вдоль осей координат так, что длина ребра равна 2.
То есть в принципе можно было бы разложить потенциал до степеней второго порядка по всем трем направлениям и посмотреть, какие направления зануляют вторую производную.
То есть выяснить форму поверхностей роста и убывания потенциала в окрестности малой сферы вокруг центра.
Аналогичную задачу можно Решить для остальных 4-х Платоновских тел. Может еще включить в них футбольный мяч в честь надвигающегося ЧМ -2018. Поверхность футбольшого мяча представляет собой сшивку из правильных пяти и шестиугольников.
Так что фигура тоже вполне симметричная.
Будет ли качественно картинка такой же по направлению к вершинам и центрам граней, как в случае с кубом?