2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Гравитация. Задача трех тел. Частный случай
Сообщение26.06.2018, 17:29 


05/09/16
12058
fred1996 в сообщении #1322745 писал(а):
Вот лично я про эти точки никогда не слышал.

Надо было выписывать и читать "Технику-молодежи" в 1985 году: http://epizodyspace.ru/bibl/tm/1985/12/put.html

 Профиль  
                  
 
 Картинка
Сообщение26.06.2018, 20:58 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
Поскольку интерес представляет только точка $L_4(L_5)$, то для наглядности представлю картинку
Изображение

 Профиль  
                  
 
 Re: Гравитация. Задача трех тел. Частный случай
Сообщение26.06.2018, 21:01 
Аватара пользователя


31/08/17
2116
Треугольник $Mm\mu$ -- равносторонний.

На самом деле в качестве олимпиадной тут сгодилась бы такая задача. Доказать, что три точечных массы притягивающиеся друг к другу по закону всемирного тяготения и находящиеся все время в плоскости и не лежащие на одной прямой, движутся как твердое тело тогда и только тогда, когда они образуют равносторонний треугольник, который вращается с постоянной угловой скоростью вокруг центра масс системы

 Профиль  
                  
 
 Re: Гравитация. Задача трех тел. Частный случай
Сообщение26.06.2018, 21:05 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Эта задача противоречит трём из пяти точек Лагранжа?

P. S. А, исправлена формулировка.

 Профиль  
                  
 
 Re: Гравитация. Задача трех тел. Частный случай
Сообщение26.06.2018, 21:06 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
pogulyat_vyshel
Спасибо, хорошая задачка.
wrest

(Оффтоп)

надо было 4 года назад биткоины покупать


-- 26.06.2018, 10:10 --

Munin в сообщении #1322800 писал(а):
Эта задача противоречит трём из пяти точек Лагранжа?

Не противоречит. Просто остальные на мой взгляд не так интересны. И колебания там если и есть, то более тривиальные. Для $L_2(L_3)$ только радиальные. И скорее всего неустойчивые.

 Профиль  
                  
 
 Re: Гравитация. Задача трех тел. Частный случай
Сообщение27.06.2018, 00:32 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
pogulyat_vyshel в сообщении #1322799 писал(а):
Треугольник $Mm\mu$ -- равносторонний.

На самом деле в качестве олимпиадной тут сгодилась бы такая задача. Доказать, что три точечных массы притягивающиеся друг к другу по закону всемирного тяготения и находящиеся все время в плоскости и не лежащие на одной прямой, движутся как твердое тело тогда и только тогда, когда они образуют равносторонний треугольник, который вращается с постоянной угловой скоростью вокруг центра масс системы

Немного поломав голову, я ее решил практически без вычислений. В векторном виде.

 Профиль  
                  
 
 Re: Гравитация. Задача трех тел. Частный случай
Сообщение27.06.2018, 12:24 
Аватара пользователя


31/08/17
2116
Вв векторном виде- это само собой, а без вычислений это я не понимаю, это для меня слишком круто

 Профиль  
                  
 
 Re: Гравитация. Задача трех тел. Частный случай
Сообщение27.06.2018, 17:36 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
Без вычислений, это типа в уме. :D
Пусть у нас массы тел будут $m_1,m_2, m_3$. Поместим их в вершины равностороннего треугольника со стороной $r$, И векторы их соединяющие $\vec{r}_{12}, \vec{r}_{23}, \vec{r}_{13}$
Тогда сила гравитации, действующая на первое тело будет $G\frac{m_1}{r^3}(m_2\vec{r}_{12}+m_3\vec{r}_{13})$. Откуда видно, что вектор этой силы проходит через ЦМ Этой системы. Аналогично и для двух других тел. То есть все такие силы проходят через общий центр масс. Давайте закрутим эту систему вокруг ЦМ с такой угловой скростью, чтобы центробежная сила, действующая на первое тело уравновесилась силой гравитации. Тогда получится что векторная сумма остальных двух сил гравитации уравновесится суммой центробежных сил. Причем направления сил гравитации и центробежных сил совпадают. Это возможно только в таком случае, когда центробежные силы и силы гравитации попарно уравновешивают друг друга.

Кстати задачку, в том виде как я дал, я решал довольно долго с помощью геометрических построений и некоторой тригонометрии.
Тогда как она всего лишь частный случай, предложенной вами.

-- 27.06.2018, 06:52 --

Ну и невозможность получить равновесие в случае неравностороннего треугольника доказывается анологичным образом. Теперь закрутим систему с какой нибудь угловой скоростью вокруг общего ЦМ. Тогда сила гравитации на первое тело будет $Gm_1(\frac{m_2\vec{r}_{12}}{r_{12}^3}+\frac{m_3\vec{r_{13}}}{r_{13}^3})$. И явно не проходит через ЦМ системы. Равновесия нет.

 Профиль  
                  
 
 Re: Гравитация. Задача трех тел. Частный случай
Сообщение27.06.2018, 18:20 
Аватара пользователя


31/08/17
2116
fred1996 в сообщении #1322969 писал(а):
Тогда сила гравитации, действующая на первое тело будет $G\frac{m_1}{r^3}(m_2\vec{r}_{12}+m_3\vec{r}_{13})$.

а что такое $r$?

 Профиль  
                  
 
 Re: Гравитация. Задача трех тел. Частный случай
Сообщение27.06.2018, 19:12 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
Это длина стороны равностороннего треугольника

 Профиль  
                  
 
 Re: Гравитация. Задача трех тел. Частный случай
Сообщение27.06.2018, 19:40 
Аватара пользователя


31/08/17
2116
fred1996 в сообщении #1322969 писал(а):
Тогда получится что векторная сумма остальных двух сил гравитации уравновесится суммой центробежных сил.

с этого места понимать перестал, формулы нужны и внятные объяснения. Ну т.е. мне не нужны, я решение и так знаю, и понять , что вы пишите дальше пытаться не буду, на нервы этот стиль действует, откровенно говоря.

 Профиль  
                  
 
 Re: Гравитация. Задача трех тел. Частный случай
Сообщение27.06.2018, 20:01 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
Пусть у нас есть для этой задачи набор сил гравитации $\vec{F}_i$ и набор центробежных сил $\vec{f}_i$. Мы выяснили, что они попарно параллельны да еще в сумме по соответствующим тройкам дают ноль. Возьмем и приравняем $\vec{F}_1=\vec{f}_1$.
Тогда в двумерной декартовой системе у нас получится 4 уравнения, связывающие 4 неизвестных четырмя известными параметрами:
$\vec{f}_1+\vec{f}_2=\vec{F}_1+\vec{F}_2$
$\vec{F}_1\times\vec{f}_1=0$
$\vec{F}_2\times\vec{f}_2=0$
Решение у этой системы тривиальное : $\vec{f}_i=\vec{F}_i$

-- 27.06.2018, 09:07 --

pogulyat_vyshel
Вы уж извините, а стиль я по возможности выбираю словесный. Это из педагогических соображений.
Своих учеников я как раз приучаю к тому, чтобы они сами учились переводить слова в формулы. И здесь по возможности оставляю шанс другим участникам самим перевести слова в формулы. Чтобы не все медом казалось. :D

 Профиль  
                  
 
 Re: Гравитация. Задача трех тел. Частный случай
Сообщение27.06.2018, 21:35 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
Ладно, приведу тогда даказательство, которое требует немного бумаги и чернил.
Итак, если первое тело поместить в центр координат, то сила гравитации у нас будет. $ G\frac{m_1}{r^3}(m_2\vec{r}_{12}+m_3\vec{r}_{13})$
А ЦМ системы будет находиться в точке $\vec{a}=\frac{m_2\vec{r}_{12}+m_3\vec{r}_{23}}{m_1+m_2+m_3}$
Если теперь всю систему раскрутить вокруг ЦМ, то для удержания первого тела на круговой орбите понадобится сила $m_1\omega^2\vec{a}$ Отсюда находим требуемую угловую скорость $\omega ^2=G\frac{m_1+m_2+m_3}{r^3}$, которая оказывается одна и та же для всех трех тел.

Единственное, сдается мне, что сия конструкция находится в неустойчивом равновесии. И за достаточно длительный промежуток времени равносторонний треугольник рассыпется. Устойчивость для двух массивных и одного легкого обьекта тоже на самом деле только квази. Она возможна только в предположении что два тяжелых тела двигаются строго по круговым орбитам вокруг их общего ЦМ. Но на самом деле это не так, и за достаточно длительное время присутствие третьего малого тела разрушит этот баланс.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 28 ]  На страницу Пред.  1, 2

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Ignatovich


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group