2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: О пользе неравенств
Сообщение17.03.2018, 10:33 
Аватара пользователя


14/12/17
1516
деревня Инет-Кельмында
Rusit8800 в сообщении #1297909 писал(а):
Я похоже нашел книгу, в которой теория неравенств излагается с помощью "взрослого" математического аппарата - Г. Харди, Дж. Литлвуда и Г. Полиа "Неравенства".


Есть еще Э. Беккенбах, Р. Беллман "Неравенства", написана на 30 лет позже.

 Профиль  
                  
 
 Re: О пользе неравенств
Сообщение17.03.2018, 10:36 
Аватара пользователя


15/11/15
1297
Москва
Вот эти 2 книги реально интересны. Жалко только, что там нет упражнений.

 Профиль  
                  
 
 Re: О пользе неравенств
Сообщение17.03.2018, 17:18 
Заслуженный участник


18/01/15
3225
Rusit8800
Вроде бы, насколько я знаю, существует (в принципе) алгоритм, который по любой системе полиномиальных уравнений и неравенств, коэффициенты в которой --- рациональные числа, (и даже более того --- по комбинации уравнений и неравенств, содержащей кванторы), устанавливает, разрешима эта система в действительных числах, или нет. Называется "теорема Тарского-Зайденберга". Так что в принципе любую систему неравенств можно доказать, или же привести контрпример. Правда, сложность этого алгоритма астрономическая. Ссылки я конкретной давать не буду, факт этот очень широко известный, и есть много источников (и я в них не ориентируюсь), погуглите сами. Можете также почитать популярную статью А.А.Разборова в 3-м выпуске (1999 г.) журнала "Математическое просвещение".

-- 17.03.2018, 16:34 --

Если же в общем плане Вы интересуетесь, есть ли от решения многочисленных олимпиадных задач на неравенства толк для будущих занятий более серьёзной математикой, так это вопрос неопределенный. Я вот, скажем, в заковыристых задачах на "школьную" геометрию не силен, но и представить себе математика, который в школьной геометрии не ориентируется от слова совсем, тоже не могу.

 Профиль  
                  
 
 Re: О пользе неравенств
Сообщение17.03.2018, 18:34 
Аватара пользователя


15/11/15
1297
Москва
vpb в сообщении #1297953 писал(а):
но и представить себе математика, который в школьной геометрии не ориентируется от слова совсем, тоже не могу.

Не спорю, иначе это был бы совсем тяжелый случай.

 Профиль  
                  
 
 Re: О пользе неравенств
Сообщение17.03.2018, 21:29 
Заслуженный участник


05/08/14
1564
Rusit8800 в сообщении #1297787 писал(а):
мне интересно, есть ли какая-нибудь польза от подобных неравенств, кроме получения эстетического удовольствия?

По замечанию Арнольда, за искусство манипулировать неравенствами дают Филдсовские премии (правда, это было отмечено с негативным оттенком, имелся в виду отпрыск тогдашнего президента Математического Союза). В теории уравнений в частных производных разного рода неравенства и умение обращаться с ними необходимы для доказательства существований решений и их гладкости, неравенства - основной инструмент в этой науке. Неравенство Йенсена является основанием, как и некоторые другие неравенства, в такой важной области случайных процессов, как теория суб(супер)-мартингалов.
Кроме того, в финансовой математике существование всех финансовых рисков является, по сути, следствием неравенства Йенсена.

 Профиль  
                  
 
 Re: О пользе неравенств
Сообщение17.03.2018, 22:29 
Заслуженный участник


09/05/12
25179
 i  "Лютый оффтопик" (по выражению одного из участников) отправлен в «О посылах»

 Профиль  
                  
 
 Re: О пользе неравенств
Сообщение18.03.2018, 01:02 
Заслуженный участник
Аватара пользователя


09/09/14
6328
Rusit8800 в сообщении #1297914 писал(а):
Вот эти 2 книги реально интересны. Жалко только, что там нет упражнений.
Там в списке литературы найдите двухтомник Полиа, Сеге. Вам там красивых и полезных упражнений на всю жизнь хватит :D

 Профиль  
                  
 
 Re: О пользе неравенств
Сообщение18.04.2018, 20:44 
Основатель
Аватара пользователя


11/05/05
4312
 !  podlyzasrancec aka Cap, забанен на месяц за свое высказывание в этом топике и за адресное хамство мне в ЛС.

 Профиль  
                  
 
 Re: О пользе неравенств
Сообщение18.04.2018, 21:32 
Заблокирован


16/04/18

1129
Про книги о неравенствах- кроме указанных, есть более современные отличные книги, в которых соавтор- Д.Митринович, а также книга Маршалл/Олкин Теория мажоризации, полная приложений.
Про важность неравенств- современная математика-это наука о неравенствах, это раньше была наукой о равенствах. "В реальной жизни равенства не существует. Есть только неравенства".
Про надо/не надо. Специалисты не любят убеждать неспециалистов, попробую. Вот TC пишет, что то-то не надо, он возьмёт производные и всё хорошо. Может быть Вы удивитесь, но написанные производные от тригонометрических функций- это всё следствия ровно одного неравенства - $\sin x \le x$, из него выводится предел с синусом, который романтики называют замечательным, а из пределов-формулы производных синусов/косинусов.
Надо неравенство Йенсена? Это один из основных фактов не только теоретической математики, но и прикладной. Про прикладную. Это неравенство эквивалентно определению выпуклости. А выпуклый анализ-это основа прикладной математики. Когда рассчитывается что-то, что ездит, летает, стреляет, летит или оптимизируется, то это результат применения выпуклой оптимизации обычно, и неравенства там при оценках все нужны.
А олимпиады-да, это спорт, но те кто там хороши часто применяют свои навыки и потом, становятся хорошими математиками, программерами, прикладниками. Часто не становятся. Но это лучше домино или преферанса, мне кажется.

 Профиль  
                  
 
 Re: О пользе неравенств
Сообщение19.04.2018, 01:05 
Заслуженный участник
Аватара пользователя


30/01/06
72407
novichok2018 в сообщении #1305405 писал(а):
написанные производные от тригонометрических функций- это всё следствия ровно одного неравенства - $\sin x \le x$

Позволю себе усомниться, поскольку $0$ тоже $\leqslant x.$

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 25 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Bing [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group