2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 При каких a корни отрицательны
Сообщение02.02.2018, 11:20 


14/09/16
286
есть вопросы по поводу решения системы. но по порядку.
дано уравнение
$x^2-(a+1)x+a+4=0$
При каких $a$ корни отрицательны?

заменил для удобства
$z=a+1$
Тогда
$x^2-zx+z+3=0$
Я понимаю надо, чтобы дискриминант был больше нуля? а корни отрицательные.
Получиться система из трех уравнений.
$$
\left\{
\aligned
 z^2 -4z-12\geqslant{0}\\
 z+\sqrt{z^2 -4z-12}<0,\\
 z-\sqrt{z^2 -4z-12}<0
\endaligned\right.\eqno 
$$

можно ли возвести в квадрат второе и третье уравнение?
или здесь надо разбить на положительную и отрицательную составляющие z?

 Профиль  
                  
 
 Re: При каких a корни отрицательны
Сообщение02.02.2018, 11:24 
Заслуженный участник
Аватара пользователя


27/12/17
1439
Антарктика
А не проще графически решить, записав $x^2=(a+1)x-a-4$

 Профиль  
                  
 
 Re: При каких a корни отрицательны
Сообщение02.02.2018, 11:39 


14/09/16
286
thething
спасибо я понял идею, то есть после записи уравнения можно почти сразу сказать что только при $a=-1$?
я почему то сегодня туго соображаю и поторопился, сейчас решу

 Профиль  
                  
 
 Re: При каких a корни отрицательны
Сообщение02.02.2018, 11:43 
Аватара пользователя


14/12/17
1529
деревня Инет-Кельмында
Есть теорема Виета.
Когда оба корня отрицательны, что можно сказать про их сумму и произведение?

 Профиль  
                  
 
 Re: При каких a корни отрицательны
Сообщение02.02.2018, 11:44 
Заслуженный участник
Аватара пользователя


27/12/17
1439
Антарктика
Сразу ясно, что $a+1<0$, а далее Вам надо эту прямую всячески крутить и перемещать, чтобы было 2 общие точки с параболой. Для начала можно найти такое $a$, при котором решение единственно и именно отрицательно, а потом от данной прямой смотреть. Графики при этом очень сильно помогают

 Профиль  
                  
 
 Re: При каких a корни отрицательны
Сообщение02.02.2018, 11:48 


14/09/16
286
eugensk
значит произведение положительно, а сумма отрицательна
thething
мне надо немного времени, спасибо вам

 Профиль  
                  
 
 Re: При каких a корни отрицательны
Сообщение02.02.2018, 15:39 
Заслуженный участник
Аватара пользователя


27/12/17
1439
Антарктика
Ivan 09
Если захотите воспользоваться теоремой Виета, то не забудьте потребовать дополнительно, чтобы было $D>0$, иначе при некоторых $a$ получите пару комплексных корней, удовлетворяющих Вашему условию
Ivan 09 в сообщении #1289384 писал(а):
значит произведение положительно, а сумма отрицательна

 Профиль  
                  
 
 Re: При каких a корни отрицательны
Сообщение02.02.2018, 16:57 
Заслуженный участник


10/01/16
2318
Ivan 09 в сообщении #1289371 писал(а):
можно ли возвести в квадрат второе и третье уравнение?

Можно. Только делать это надо аккуратно...
Во втором: оставить корень слева. Это сразу даст отрицательность $z$. Тогда: третье надо просто выбросить, а вот второе теперь можно возвести в квадрат.
А вообще, для таких задач более эффективным является геометрическое описание условий задачи в терминах "вершина параболы", и т.п. Например, у Вас: отрицательность обоих корней означает: неотрицательность дискриминанта, "вершина - слева", "в нуле - положительное значение". Видим, что это - ровно то, что получено при решении Вашей системы....

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 8 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group