2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 ВТФ и дискретная динамика
Сообщение03.12.2017, 13:51 
Аватара пользователя


25/02/07

887
Симферополь
Знакомая всем запись ВТФ $ x^n+y^n \neq z^n,\ x,y,z\in N $ разбивает множество степеней на три случая: $ n=1,\ n=2,\ n>2 $, первый из которых малоинформативен, а третий требует доказательства. Второй же позволяет явно увидеть условия выполнения равенства $ x^n+y^n=z^n $. Получим их.
Договоримся, что $ x<y $.
Первое условие - равенство ($ n $-мерных) объёмов, оно очевидно: $ x^n=z^n-y^n $.
Второе условие - равенство путей. Чтобы получить его представим величины $ x^n $ и $ z^n-y^n $ трапециями (криволинейными в случае $ n>2 $) с основаниями $ x $ и $ z-y $ соответственно.
Пусть имеется начальный (дискретный) треугольник площадью $$ x^2=\sum\limits_{k=1}^x 2k-1 $$
с основанием $ x $.
Очевидно, что если пошагово двигать это основание в положительном направлении сохраняя его величину, то площадь опирающейся на него трапеции (в которую перейдёт треугольник уже на первом шаге) будет неограниченно увеличиваться. Но это запрещено равенством объёмов (в данном случае - площадей) – площадь начального треугольника должна равняться площади конечной трапеции. Таким образом, для соблюдения этого условия основание конечной трапеции должно быть меньше основания начального треугольника, что и выполняется в любой пифагоровой тройке: при $ x^2+y^2=z^2 $ всегда $ x>z-y $. Это значит, что при движении основание начального треугольника пошагово сокращается до тех пор, пока не сравняется с основанием конечной трапеции.
Однако, число шагов одинаково для обоих (левого и правого) краёв начального основания $ x $. Это число – тактовое (дискретное) время $ t $ за которое площадь начального треугольника, сначала возрастая и потом убывая, возвращается к своему исходному значению. Из этого следует, что пути, которые проходят левый и правый края начального основания, имеют общий делитель и тактовое время равно их НОД: $ t=gcd(y,z-x) $. Это действительно выполняется в любой пифагоровой тройке. Соответственно, скорости левого и правого краёв начального основания имеют значения $ v_{l}=y/t,\ v_{r}=z-x/t $. При этом, на шаге $ t+1 $ левый край начального основания догонит его правый край.
Сделаем следующие замены:

$ b_{s}=x $ - начальное основание (треугольника),
$ b_{f}=z-y $ - конечное основание (трапеции),
$ d_{l}=y $ - путь левого края начального основания (левый путь),
$ d_{r}=z-x $ - путь правого края начального основания (правый путь),
$ v_{l}=d_{l}/t $ - скорость левого края начального основания (левая скорость),
$ v_{r}=d_{r}/t $ - скорость правого края начального основания (правая скорость),
$ t=gcd(y,z-x) $ - тактовое время (наибольший общий делитель левого и правого путей).

Теперь мы можем явно указать второе условие - равенство путей:

$ b_{s}+v_{r}t=b_{f}+v_{l}t $

Далее, пользуясь полученными условиями, - условием равенства объёмов и условием равенства путей - можно получить общее условие существования пифагоровой тройки. Оно таково:
$$ \begin{vmatrix} b_{s}^2 & b_{s}^2 \\ v_{r}^2 & v_{l}^2 \end{vmatrix} + \begin{vmatrix} b_{f}^2 & b_{f}^2 \\ v_{l}^2 & v_{r}^2 \end{vmatrix} = \begin{vmatrix} 2b_{s}b_{f} & 0 \\ 0 & 2v_{l}v_{r} \end{vmatrix}$$
и должно выполняться в натуральных числах.
В случае первой степени скорости левого и правого краёв начального основания одинаковы и его величина сохраняется при любом времени движения.
Сравнение поведения скоростей в случаях $ n=1 $ и $ n=2 $ заставляет предположить, что в случае $ n=3 $ к тактовым скоростям добавятся тактовые ускорения $ a_{l} $ и $ a_{r} $. ВТФ утверждает, что при этом выполнение условия равенства объёмов невозможно. Как ускорения $ a_{l} $ и $ a_{r} $ повлияют на условие равенства путей я пока не вполне понимаю.

P.S. Условие равенства путей $ \Delta b = \Delta v\cdot t $ можно интерпретировать иначе считая НОД $ (d_{l},d_{r}) $ не временем, а скоростью. Тогда края начального основания будут проходить свои пути с одинаковой скоростью, но за разное время и условие примет вид $ \Delta b = v\cdot \Delta t $. Его смысл в этом контексте не ясен, но любопытна аналогия с локальными временами в специальной теории относительности.

P.P.S. Удалось привести некоторые степенные выражения к матричному виду. Пусть

$ P = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} $ - матрица показателя степени,
и
$ A = \begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ a(a-1)/2 & a & 1 \end{pmatrix} $ - матрица основания степени (для числа $ b $ - аналогично),

$ e_{1},\ e^{1} = . $ - ко- и контравариантные первые орты (вырезают из матрицы левый верхний элемент).

Тогда

$ a^2 = .PA. $

$ 3a^2 = .A^{T}PA. $

$ -a^2 = .(A^{-1})^{T}PA. $

$ b^2 + a^2 = .PAB. $

$ b^2 + 2ab = .A^{T}PB. $

$ b^2 - 2ab = .(A^{-1})^{T}PB. $

$ b^2 - a^2 = .(A^{-1})^{T}PAB. $

 Профиль  
                  
 
 Re: ВТФ и дискретная динамика
Сообщение03.12.2017, 20:12 
Заслуженный участник
Аватара пользователя


23/07/05
17976
Москва
serval в сообщении #1271397 писал(а):
равенство путей
Что такое "пути"? И почему они должны быть равны?

serval в сообщении #1271397 писал(а):
(дискретный) треугольник
Что такое "дискретный треугольник"?

serval в сообщении #1271397 писал(а):
$$ x^2=\sum\limits_{k=1}^x 2k-1 $$
Это неверное равенство. Правая часть равна $x^2+x-1\neq x^2$.

serval в сообщении #1271397 писал(а):
$$ \begin{vmatrix} b_{s}^2 & b_{s}^2 \\ v_{r}^2 & v_{l}^2 \end{vmatrix} + \begin{vmatrix} b_{f}^2 & b_{f}^2 \\ v_{l}^2 & v_{r}^2 \end{vmatrix} = \begin{vmatrix} 2b_{s}b_{f} & 0 \\ 0 & 2v_{l}v_{r} \end{vmatrix}$$
Это определители? Откуда взялось такое равенство?

 Профиль  
                  
 
 Re: ВТФ и дискретная динамика
Сообщение03.12.2017, 22:24 
Аватара пользователя


25/02/07

887
Симферополь
1. Рисуем числовую положительную полуось и отмечаем на ней целые числа, поскольку мы будем сдвигать начальное основание вправо на целое число за один шаг (такт). Откладывает на нём основание исходного треугольника. Двигаем его края вправо - каждый край со своей скоростью.
На примере корневой примитивной пифагоровой тройки это будет так:

$3^2+4^2=5^2$

$ b_{s}=3 $ - начальное основание (треугольника),
$ b_{f}=5-4=1 $ - конечное основание (трапеции),
$ d_{l}=4 $ - путь левого края начального основания (левый путь),
$ d_{r}=5-3=2 $ - путь правого края начального основания (правый путь),
$ v_{l}=4/2=2 $ - скорость левого края начального основания (левая скорость),
$ v_{r}=2/2=1 $ - скорость правого края начального основания (правая скорость),
$ t=gcd(4,2)=2 $ - тактовое время (наибольший общий делитель левого и правого путей).

Тогда по тактам края начального основания движутся так:

$t=0$: левый край находится в точке $0$, правый - в точке $3$,
$t=1$: левый край достигает точки $2$, правый - точки $4$,
$t=2$: левый край достигает точки $4$, правый - точки $5$ - здесь площадь исходного треугольника становится равной площади конечной трапеции.

{ $t=3$: левый край достигает точки $6$, правый - той же точки $6$ - здесь левый край догоняет правый, площадь конечной трапеции обращается в $0$ }

Я неверно сформулировал. Конечно, пути краёв не равны. Равны расстояния: начальное основание + правый путь = левый путь + конечное основание. Оба расстояния равны $z$.

2. Это треугольник составленный "столбиками" с основаниями равными $1$ и нечётными высотами - $1,3,5\ldots$
Подставим в это равенство, к примеру, $x=5$ Получим: $$ \sum\limits_{k=1}^5 = 1+3+5+7+9=25 $$
Или я не так считаю?

3. Да, это определители. Это равенство получается при подстановке второго условия (равенства расстояний) в первое (равенство площадей) после соответствующих преобразований. Конечная формула компактно сворачивается в эти определители. Я решил не перегружать стартовый пост её выводом, но проверил аналитически - после обратных подстановок она обращается в $0$.

 Профиль  
                  
 
 Re: ВТФ и дискретная динамика
Сообщение03.12.2017, 22:29 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
serval в сообщении #1271641 писал(а):
Или я не так считаю?

Вы скобки под знаком суммы не поставили

 Профиль  
                  
 
 Re: ВТФ и дискретная динамика
Сообщение03.12.2017, 22:39 
Аватара пользователя


25/02/07

887
Симферополь
Точно, не поставил. Даже не подумал, что это меняет смысл. Спасибо. А как теперь исправить?

 Профиль  
                  
 
 Re: ВТФ и дискретная динамика
Сообщение03.12.2017, 22:44 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
serval
Ну, вы же сказали.. считайте это исправлением.
На самом деле это все мелочи. По сравнению с полной невразумительностью последующего текста... Какие-то непонятные треугольники и трапеции, которым не дано явного определения. Какие-то "пути"...

 Профиль  
                  
 
 Re: ВТФ и дискретная динамика
Сообщение03.12.2017, 22:55 
Аватара пользователя


25/02/07

887
Симферополь
На картинке это было бы тривиально. Попробую сделать.
Про треугольник я объяснил. Если два составленных таким образом треугольника разной величины наложить друг на друга так, чтобы совпал один из углов, то их разница образует трапецию.

 Профиль  
                  
 
 Re: ВТФ и дискретная динамика
Сообщение03.12.2017, 23:07 
Заслуженный участник
Аватара пользователя


23/07/05
17976
Москва
serval в сообщении #1271670 писал(а):
Про треугольник я объяснил.
Где?

 Профиль  
                  
 
 Re: ВТФ и дискретная динамика
Сообщение03.12.2017, 23:36 
Аватара пользователя


25/02/07

887
Симферополь
Чтобы не тратить время, сделал эскиз.

Изображение

После загрузки в облако картинку почему-то развернуло. Это пояснительный набросок, позже сделаю аккуратно. Надеюсь, теперь будет понятно.

 Профиль  
                  
 
 Re: ВТФ и дискретная динамика
Сообщение04.12.2017, 10:39 
Аватара пользователя


25/02/07

887
Симферополь
Исправление ошибок

1. В формуле площади дискретного треугольника $ x^2=\sum\limits_{k=1}^x 2k-1 $ пропущены скобки под знаком суммы, её следует читать так: $ x^2=\sum\limits_{k=1}^x (2k-1) $ .

2. "Второе условие - равенство путей" - в формулировке второго условия допущена ошибка, равны не пути, а расстояния. Везде в тексте его следует читать так: "Второе условие - равенство расстояний".

 Профиль  
                  
 
 Re: ВТФ и дискретная динамика
Сообщение06.12.2017, 20:13 
Аватара пользователя


25/02/07

887
Симферополь
Иллюстрация

Рассмотрим дискретную динамику на примере примитивной пифагоровой тройки $ 28^2 + 45^2 = 53^2 $ , где $ x = 28 $ .
Тогда:

$ b_{s}=x=28 $ - начальное основание (треугольника),
$ b_{f}=z-y=8 $ - конечное основание (трапеции),
$ d_{l}=y=45 $ - путь левого края начального основания (левый путь),
$ d_{r}=z-x=25 $ - путь правого края начального основания (правый путь),
$ t=gcd(y,z-x)=gcd(d_{l}, d_{r})=5 $ - тактовое время (наибольший общий делитель левого и правого путей),
$ v_{l}=d_{l}/t=9 $ - скорость левого края начального основания (левая скорость),
$ v_{r}=d_{r}/t=5 $ - скорость правого края начального основания (правая скорость).

По тактам это выглядит так:
t=0: левый край основания дискретного треугольника площадью $ 28^2=\sum\limits_{k=1}^{28} (2k-1) $ находится в точке $0$ , правый - в точке $28$ ,
Изображение

t=1: левый край основания дискретной (уже) трапеции находится в точке $9$ , правый - в точке $33$ ,
Изображение

t=2: левый край основания дискретной трапеции находится в точке $18$ , правый - в точке $38$ ,
Изображение

t=3: левый край основания дискретной трапеции находится в точке $27$ , правый - в точке $43$ ,
Изображение

t=4: левый край основания дискретной трапеции находится в точке $36$ , правый - в точке $48$ ,
Изображение

t=5: левый край основания дискретной трапеции находится в точке $45$ , правый - в точке $53$ , а её площадь принимает значение равное площади исходного треугольника.
Изображение

Предположение о том, что на следующем такте левый край начального основания догонит его правый край и площадь трапеции обратится в $0$ в общем случае оказалось неверным.

Таким образом, за время $t$ равное $5$ тактам треугольник переходит в равную по площади трапецию оставаясь на каждом шаге разностью квадратов. При этом, площади синих фигур по тактам таковы: $784$ (исходный треугольник), $1008$ , $1120$ , $1120$ , $1008$ , $784$ (конечная трапеция).

 Профиль  
                  
 
 Re: ВТФ и дискретная динамика
Сообщение09.12.2017, 12:42 
Аватара пользователя


25/02/07

887
Симферополь
Иллюстрация дискретной динамики пифагоровых троек на примере задачи про двух пассажиров.

Все величины в задаче принимают только натуральные значения.

У перрона стоит вагон имеющий длину $ l $ .
В разных концах вагона находятся два пассажира: пассажир А – в левом конце с координатой $ 0 $ , а пассажир Б – в правом конце с координатой $ l $ .
В момент времени $ t=0 $ каждый пассажир имеет банковскую карточку количество денег на которой равно квадрату его расстояния от начала координат: пассажир А имеет счет равный $ 0 $ , а пассажир Б – равный $ l^2 $ .
Вагон начинает движение вправо со скоростью $ v_1 $ и в тот же момент пассажир Б начинает движение к пассажиру А со скоростью $ v_2 $ .

Варианты вопроса:
- через какое время $ t $ разность счетов на карточках пассажиров А и Б станет той же, что была вначале?
или
- каким будет расстояние $ r $ между пассажирами А и Б когда разность счетов на их карточках станет той же, что была вначале?

 Профиль  
                  
 
 Re: ВТФ и дискретная динамика
Сообщение10.12.2017, 09:26 
Аватара пользователя


25/02/07

887
Симферополь
Полагаю, что все, кому задача была интересна, решили её.

Итак, искомое время таково: $ t = \frac{l}{v_2} - \frac{l}{2v_1 - v_2} $ .

Для существования пифагоровой тройки нужно чтобы уравнение выполнялось в натуральных числах.

Для записи в исходных обозначениях нужно сделать следующие замены:

$ l = b_{s} $ - длина вагона,
$ v_1 = v_{l} $ - скорость вагона,
$ v_2 = v_{l} - v_{r} - скорость пассажира Б относительно вагона против его движения.

После решения задачи я сообразил, что она выглядела бы проще, если бы пассажир Б был неподвижен, а пассажир А двигался к нему по направлению движения вагона. Для кубов попробую решить в таком виде.

 Профиль  
                  
 
 Re: ВТФ и дискретная динамика
Сообщение11.12.2017, 00:36 
Аватара пользователя


25/02/07

887
Симферополь
Учитывая, что искомое расстояние равно $ r = l-v_{2}t $ и перейдя к исходным обозначениям, получим выражение для левой скорости:
$$ v_l = \frac{b_{s}^2 - b_{f}^2}{2 b_{f} t} $$
Из него видно, что разность квадратов начального и конечного оснований должна быть чётным числом кратным самому конечному основанию.

P.S. Верна первоначальная формулировка задачи. Если же двигать пассажира А к пассажиру Б, то вообще ничего не получается.

 Профиль  
                  
 
 Re: ВТФ и дискретная динамика
Сообщение23.12.2017, 17:57 
Аватара пользователя


25/02/07

887
Симферополь
Аналогичная задача для кубов приводит к квадратному уравнению относительно времени $t$ :

$b_s^3 = ( b_s + (v_l - v_r) t )^3 - v_l^3 t^3$

которое имеет два решения:

$t_1 = - \frac{\sqrt{3} \sqrt{(v_l - v_r) b_s^2(7 (v_l - v_r)^3 -  4 v_l^3)} + 3 (v_l - v_r)^2 b_s}{2 ({v_l}^3 - (v_l - v_r)^3)}$

$t_2 =   \frac{\sqrt{3} \sqrt{(v_l - v_r) b_s^2(7 (v_l - v_r)^3 -  4 v_l^3)} - 3 (v_l - v_r)^2 b_s}{2 ({v_l}^3 - (v_l - v_r)^3)}$

каждое из которых содержит множитель $\sqrt{3}$ .

Следует ли из этого, что время $t$ не может иметь целых значений?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 17 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: ydgin


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group