2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3  След.
 
 Вычисление известных интегралов через вычеты
Сообщение11.06.2008, 20:21 
Аватара пользователя
$\int\limits_{-\infty}^{+\infty}\frac{sin x}xdx = Im \int\limits_{-\infty}^{+\infty}\frac{e^{iz}}zdz = Im \lim\limits_{a\to 0} \int\limits_{-\infty}^{+\infty}\frac{e^{iz}}{z-a}dz $

если $Im a > 0$ то интеграл равен $Im(2\pi i e^{ia}) \to 2\pi $
если $Im a < 0$ то интеграл равен нулю
таким образом предела нет, хотя он вроде должен равняться $\pi$

Добавлено спустя 1 минуту 2 секунды:

Аналогичный вопрос для $\int\limits_{-\infty}^{+\infty}e^{-x^2}dx$

 
 
 
 
Сообщение11.06.2008, 20:33 
Второй интеграл прямого отношения к вычетам не имеет.

Что касается первого: предел при каких-то там "а" тут не при чём, а просто главное значение интеграла определяется через вычеты. А поскольку главное значение совпадает с собственно интегралом (ибо интегал-то, собственно говоря, -- собственный), то и вопросов нет.

 
 
 
 
Сообщение11.06.2008, 20:47 
Аватара пользователя
Загадками говорите, ewert. Я вот сколько живу на свете, не научился угадывать с ходу, имеет данный интеграл отношение к вычетам (т.е. может быть сведён к ним каким-то извращённым образом), или нет.
И по первому тоже загадка. Что значит "определяется через вычеты"? Главное значение вводится в действительном анализе, где и слов-то таких не знают. (И данный интеграл, в частности, пришёл оттуда же.) Тут уточнить бы: как человек сводит к вычетам, по какому контуру интегрирует...

 
 
 
 
Сообщение11.06.2008, 21:18 
ИСН писал(а):
Загадками говорите, ewert.

Честно скажу, не загадками, а просто для меня это абсолютная тайна.

Коль речь об интегральном синусе, то тут и об никаких "а" и речи не может быть.

Коль скоро о гауссовском колокольчике -- то непонятно, при чём тут и вычеты.

Короче -- сафсем не понял, тупой.

 
 
 
 
Сообщение11.06.2008, 21:26 
Аватара пользователя
\[
{\mathop{\rm Im}\nolimits} \frac{{e^{iz} }}{z} = {\mathop{\rm Im}\nolimits} \frac{{e^{ix - y} }}{{x + iy}} = {\mathop{\rm Im}\nolimits} \frac{{e^{ - y} (\cos x + i\sin x)}}{{x + iy}} = {\mathop{\rm Im}\nolimits} \frac{{e^{ - y} (\cos x + i\sin x)(x - iy)}}{{x^2  + y^2 }} = \frac{{e^{ - y} (x\sin x + y\cos x)}}{{x^2  + y^2 }}
\], что показывает абсурдность уже первого равенства.

 
 
 
 
Сообщение12.06.2008, 13:13 
Brukvalub писал(а):
, что показывает абсурдность уже первого равенства.

Первое равенство (в корневом посте) не абсурдно, а шаблонно, если (как все и делают) интеграл с экспонентой понимается в смысле главного значения.

А вот второй переход (точнее, удивление по этому поводу) показывает, что автор не понимает доказательства теоремы о вычетах в случае простых полюсов на контуре. Результат $\pi$ (т.е. половинка от $2\pi$) получается, если контур провести ровно по вещественной оси и замкнуть по верхней бесконечной полуокружности (на основании леммы Жордана). Если же прямолинейный участок сдвинуть с полюса на сколь угодно малую величину, то, естественно, при смещении вверх получится ноль (полюс окажется вне контура), а если вниз -- то полные $2\pi$, т.к. полюс попадёт внутрь.

 
 
 
 
Сообщение12.06.2008, 13:42 
Аватара пользователя
ewert писал(а):
Первое равенство (в корневом посте) не абсурдно, а шаблонно, если (как все и делают) интеграл с экспонентой понимается в смысле главного значения.
Можно показать этот шаблонный переход поподробнее? А то мне непонятна его шаблонность...

 
 
 
 
Сообщение12.06.2008, 13:52 
Brukvalub писал(а):
ewert писал(а):
Первое равенство (в корневом посте) не абсурдно, а шаблонно, если (как все и делают) интеграл с экспонентой понимается в смысле главного значения.
Можно показать этот шаблонный переход поподробнее? А то мне непонятна его шаблонность...

Очень просто. Интеграл с синусом, будучи фактически собственным (в ноле), совпадает со своим главным (относительно ноля) значением. Главное значение интеграла с синусом есть мнимая часть аналогичного главного значения интеграла с комплексной экспонентой. Последнее получается из теоремы о вычетах.

Это же стандарт. Похоже, мы с Вами просто не поняли друг друга.

 
 
 
 
Сообщение12.06.2008, 14:03 
Аватара пользователя
Этот форум мне определённо нравится :)
Буду крайне благодарен, если вы объясните где я не прав, т.к. завтра у меня экзамен по матану :)

Brukvalub, если $z \in \mathbb R$ т.е. $y=0$ то противоречия нет: $Im\frac{e^{iz}}z = \frac{sin x}x$ по вашей формуле. Если же $y \ne 0$ то вы вывели формулу для комплексного синуса, точнее мнимой части выражения $\frac{sin z}z$, так что я не понимаю, что вам не нравится.

ewert, если $Im a > 0$ то интеграл от $\frac{e^{iz}}{z-a}$ по кривой $\Gamma = \{z\in \mathbb{C} | Im z = +\varepsilon > 0\}$, в силу леммы Жордана, будет равен $2\pi i \cdot res\limits_a = 2\pi i \cdot e^{ia}$. Если взять кривую чуть ниже вещественной оси: $\Gamma' = \{z\in \mathbb{C} | Im z = -\varepsilon < 0\}$ то интеграл по этому контуру останется прежним ( наверняка это можно строго показать ). Другое дело, что при приближении $a$ к нулю ( сверху, т.е. $Im a > 0$ ) получится $2\pi i$. Непонятно, как вы разделили это число на два.

 
 
 
 
Сообщение12.06.2008, 14:04 
Аватара пользователя
$$V.p.\int_{-\infty}^{+\infty}\frac{e^{ix}}xdx=V.p.\int_{-\infty}^{+\infty}\frac{\cos x+i\sin x}xdx=V.p.\int_{-\infty}^{+\infty}\frac{\cos x}xdx+i V.p.\int_{-\infty}^{+\infty}\frac{\sin x}xdx$$

 
 
 
 
Сообщение12.06.2008, 14:19 
Draeden писал(а):
ewert, если $Im a > 0$ то интеграл от $\frac{e^{iz}}{z-a}$ по кривой $\Gamma = \{z\in \mathbb{C} | Im z = +\varepsilon > 0\}$, в силу леммы Жордана, будет равен $2\pi i \cdot res\limits_a = 2\pi i \cdot e^{ia}$. Если взять кривую чуть ниже вещественной оси: $\Gamma' = \{z\in \mathbb{C} | Im z = -\varepsilon < 0\}$ то интеграл по этому контуру останется прежним ( наверняка это можно строго показать ). Другое дело, что при приближении $a$ к нулю ( сверху, т.е. $Im a > 0$ ) получится $2\pi i$. Непонятно, как вы разделили это число на два.

Извините, мне лень следить, кто больше нуля, кто меньше -- будем лучше говорить, снизу от начала координат проходит прямая или сверху, так надёжнее.

Так вот. В лемме Жордана принципиально, что неограниченно возрастающий отрезок вещественной оси (или параллельный ей) замыкается именно по верхней полуокружности. Ибо комплексная экспонента убывает при уходе именно в верхнюю полуплоскость -- а в нижнюю, наоборот, растёт.

Поэтому сдвиг прямой вверх и вниз приводит к совершенно различным результатам: при сдвиге вниз полюс оказывается внутри контура, так что вычет даёт $2\pi i$; при сдвиге же вверх полюс вылетает за пределы контура, и результат оказывается нулевым.

Ну а если контур проходит ровно по полюсу, то результат соответствует ровно половинке вычета. А почему -- перечитайте доказательство теоремы о вычетах. Это в любом случае полезно, раз уж завтра экзамен.

 
 
 
 
Сообщение12.06.2008, 14:30 
Аватара пользователя
Такой теоремы я не знаю. Не могли бы вы рассказать хотя бы набросок док-ва ?

 
 
 
 
Сообщение12.06.2008, 14:37 
Draeden писал(а):
Такой теоремы я не знаю. Не могли бы вы рассказать хотя бы набросок док-ва ?

Теорема звучит так: контурный интеграл равен $2\pi i$ на сумму вычетов во всех внутренних особых точках плюс $\pi i$ на сумму вычетов по особым точкам, лежащим на границе.

Однако вторая половина утверждения верна только при двух дополнительных требованиях:
1) граничные особые точки -- обязательно полюса, причём простые;
2) участок контура, на котором лежит полюс -- обязательно гладкий.
Да, и ещё, конечно: при наличии полюсов на контуре интеграл понимается в смысле главного значения, т.к. в обычном смысле он при этом расходится.

Что конкретно из этого Вам неизвестно?

 
 
 
 
Сообщение12.06.2008, 14:41 
Аватара пользователя
Draeden писал(а):
Brukvalub, если $z \in \mathbb R$ т.е. $y=0$ то противоречия нет: $Im\frac{e^{iz}}z = \frac{sin x}x$ по вашей формуле. Если же $y \ne 0$ то вы вывели формулу для комплексного синуса, точнее мнимой части выражения $\frac{sin z}z$, так что я не понимаю, что вам не нравится.
Мне не нравится то, что Вы нигде не указали, что интегрирование происходит именно по вещественной оси. Вот я и показал Вам, что без дополнительных оговорок Ваша запись непонятна и может приводить к неверным выводам.

 
 
 
 
Сообщение12.06.2008, 14:48 
На самом деле указал: если выписына бесконечные пределы, то автоматически подразумевается, что интеграл берётся именно по соответствующей оси.

 
 
 [ Сообщений: 38 ]  На страницу 1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group