lel0lelОбщее Уравнение для энергии в первом случае выглядит так:
Как видно, для малых углов можно пренебречь вкладом движения центра масс по сравнению с вращением вокруг центра масс в компоненту кинетической энергии.
Что при малых углах колебания дает:
Вполне себе гармонические колебания, если правильно выбрать координату. В данном случае это угол поворота, а не положение ЦТ.
Насчет эллиптического интеграла для конечных колебаний я слегка погорячился. Но сути это не меняет. Ответ дается через конкретный интеграл.
Для колебаний без проскальзывания примерно та же картина.
Я обычно даю эти задачи олимпиадникам в виде однородного шара с шарообразной полостью. Так сказать для закрепления вычислительной техники.
-- 29.10.2017, 08:44 --Это олимпиадная задача?
Задачка не олимпиадная, но в качестве подготовки к олимпиадам вполне сгодится.
Вообще на колебания нелегко придумать олимпиадную задачу, если иметь ввиду только вывод уравнения движения. Но есть задачи на какие-нибудь синхронные колебания, или смешанные задачи типа малых колебаний поршня в цилиндре с газом, когда надо привлекать знания из различных разделов физики.