2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 4, 5, 6, 7, 8  След.
 
 Re: Человек на платформе
Сообщение28.10.2017, 09:44 
Аватара пользователя
fred1996 в сообщении #1259814 писал(а):
Кстати, а как вы думаете, уравнения связей, это законы сохранения?

nice question

Пусть у нас есть система уравнений лагранжа со множителями в обобщенных координатах $x=(x^1,\ldots,x^m)$
$$\frac{d}{dt}\frac{\partial L}{\partial \dot x^k}-\frac{\partial L}{\partial  x^k}=c_s a^s_k,\quad c_s=c_s(x,\dot x),\quad a^s_k=a_k^s(x),\quad L=L(x,\dot x),\qquad(1)$$
и связями $$a_k^s\dot x^k=0,\quad s=1,\ldots,n<m\qquad (2)$$
Функции $f^s(x,\dot x)=a_k^s\dot x^k$ являются первыми интегралами системы (1), однако, интегралом энергии система (1) не обладает, энергия сохраняется только на нулевом совместном уровне интегралов $f^s$ те при выполнении уравнений (2)
( $L=T-V,$ где $T$ -- положительно определенная квадратичная форма скоростей, $V=V(x)$, $rang(a_i^j)=n$)

 
 
 
 Re: Человек на платформе
Сообщение28.10.2017, 12:55 
Аватара пользователя
amon в сообщении #1259438 писал(а):
У него получилось, что как бы не двигался человек, все, чего удастся достичь - это сдвига центра масс на строго определённую величину, хотя человек мог на платформу с разбега запрыгнуть, п

полно глупость-то молотить, у меня же константы вычисляются по начальным условиям

 
 
 
 Re: Человек на платформе
Сообщение28.10.2017, 14:34 
fred1996 в сообщении #1259763 писал(а):
Я бы сказал, что тут сохраняется приведенный импульс $mv+3Mv_1=0$ в любой момент времени.

Хорошо, допустим у нас абсолютно упруго сталкивается тележка из задачи (т.е. невесомая платформа, 2 непроскальзывающих колеса массой $M$ каждое, т.е. приведенная масса $3M$) и тележка с платформой массой $3M$ и невесомыми колесами. Допустим их скорости в СО земли равны $v_1$ и $v_2$ (движутся навстречу, одна из скоростей отрицательная). Как тогда мы записываем ЗСИ и ЗСЭ, в какой СО удобней решать и что будет после удара?

 
 
 
 Re: Человек на платформе
Сообщение28.10.2017, 15:28 
 !  pogulyat_vyshel, еще раз: в предложениях [url]нужно[/url] расставлять знаки препинания и заглавные буквы. Заодно полезно выбирать более корректные выражения при общении с собеседниками.

 
 
 
 Re: Человек на платформе
Сообщение28.10.2017, 18:48 
Аватара пользователя
wrest
В абсолютно упругом ударе кручение колес роли не играет. То есть расчитываем удар обычным образом. Тележки просто обменяются скоростями. После удара движение каждой тележки можно расчитать отдельно.
Та, которая с невесомыми колесами, двигается без трения, поскольку колеса невесомы и не проскальзывают. Та, которая с двумя массивными колесами, имеет сразу после удара приведенный импульс: $-2Mv_2+Mv_1=3Mv_1'$
Здесь $v_1, v_2, v_1'$ - скорость тележки до удара, сразу после удара и после окончания проскальзывания.
Фактически тут приведенным импульсом я обозвал момент импульса тележки вокруг любой горизонтальной оси, лежащей на полу, сокращенный на общий множитель $R$.

 
 
 
 Re: Человек на платформе
Сообщение28.10.2017, 22:09 
fred1996 в сообщении #1259961 писал(а):
сразу после удара и после окончания проскальзывания.

Так нет же проскальзывания.

 
 
 
 Re: Человек на платформе
Сообщение28.10.2017, 22:57 
Когда удар - придётся немного и поскользить. Массивное колесо не может мгновенно утратить момент импульса. Вот если это были бы шестерёнки, тогда да, без просказывания.

 
 
 
 Re: Человек на платформе
Сообщение28.10.2017, 23:10 
Аватара пользователя
wrest в сообщении #1260014 писал(а):
fred1996 в сообщении #1259961 писал(а):
сразу после удара и после окончания проскальзывания.

Так нет же проскальзывания.


Во время удара скорость тележки меняется мгновенно, а угловая скорость колес не меняется.
Происходит рассогласование скоростей и начнет проскальзывание, пока оно не закончится.
По крайней мере задачи на столкновение твердых тел формулируются обычно таким образом.
Если вы считаете, что к-т трения бесконечен, тогда это равнозначно абсолютно неупругому удару колес об пол. Колеса как-бы сцепляются с полом. То есть теряется энергия.
В таком варианте нужно конкретизировать последовательность ударов. Сначала тележем между собой, затем колеса тележки с полом. Это как вариант. Но в реальности столкновение такого типа будет смешанным. И тогда вообще вряд-ли можно задачу корректно сформулировать, как и в случае одновременного соударения нескольких тел.

Если вы хотите, чтобы энергия все-равно не терялась, тогда одно колесо должно с неизбежностью подскочить. Куда-то ведь должен уйти избыток энергии, после того, как вы согласовали движение тележки и вращение колес.

 
 
 
 Re: Человек на платформе
Сообщение28.10.2017, 23:44 
fred1996 в сообщении #1260025 писал(а):
Во время удара скорость тележки меняется мгновенно, а угловая скорость колес не меняется.

fred1996
Не понимаю. Берем маятник в виде невесомого стержня и груза на конце. Отклоняем груз, подставляем в место равновесия стенку и отпускаем. В момент абсолютно упругого удара мгновенно меняется как поступательная так и угловая скорости груза, на ровно противоположные, и никаких проблем с потерями энергии. Теперь берем два одинаковых маятника подвешенных в одной точке, симметрично разводим и отпускаем. Опять все нормально.

fred1996 в сообщении #1260025 писал(а):
Если вы считаете, что к-т трения бесконечен, тогда это равнозначно абсолютно неупругому удару колес об пол.

Может наоборот -- абсолютно упругому?

Но сомнение вы зародили -- вроде действительно выходит так, что соударяются три участника -- две тележки между собой и одна из тележек с землей.

А если непроскальзывающее массивное колесо катится по земле и потом ударяется в вертикальную стенку -- тоже неопределенность выйдет?

 
 
 
 Re: Человек на платформе
Сообщение29.10.2017, 01:39 
wrest в сообщении #1260032 писал(а):
А если непроскальзывающее массивное колесо катится по земле и потом ударяется в вертикальную стенку -- тоже неопределенность выйдет?


Шестеренка катится по наклонной зубчатой рейка и ударяется о вертикальную зубчатую рейку.
После удара шестеренка и выйдет из зацепления с наклонной рейкой, прокатиться по вертикальной рейке и выйдет из зацепления с ней , упадёт на наклонную и снова покатится к вертикальной рейке...

 
 
 
 Re: Человек на платформе
Сообщение29.10.2017, 01:40 
Аватара пользователя
Если массивное кольцо ударяется упруго о стенку, опять возникает вопрос, какой у нас к-т рения, конечный, или бесконечный. Если конечный, вначале будет проскальзывание. Если бесконечный, опять получаем неопределенность, каким образом удар распределяется между кольцом, стенкой и полом. Кстати в этом случае интересен вариант конечного к-та трения между стенкой и кольцом. Поскольку сила трения пропорциональна реакции опоры, то изменение продольного импульса приведет к изменению вертикального импульса и вращательного момента кольца. Оно отскочит с подскоком от стенки. И параметры отскока можно подсчитать. Все эти задачи у меня обычно из одной корзины при подготовке олимпиадников.

 
 
 
 Re: Человек на платформе
Сообщение29.10.2017, 02:49 
Аватара пользователя
pogulyat_vyshel в сообщении #1259880 писал(а):
полно глупость-то молотить, у меня же константы вычисляются по начальным условиям
Я к Вашим начальным условиям припишу $\dot{x}(0+0)=V$ и будет так, как я сказал. Вы ведь никому не сообщили, что никаких других условий нет, и про то, какие силы-потенциалы в задаче тоже, и кинетическую энергию назвали функцией Лагранжа. Ответ получился правильный, потому, что отделяется движение по разностной координате (Вашей $\phi=x-y$). Но Вы про это тоже словом не обмолвились.

 
 
 
 Re: Человек на платформе
Сообщение29.10.2017, 05:01 
Аватара пользователя
Ну придумайте задачу, где переменные не отделяются по вашему мнению. Я вам по той же схеме напишу правильный лагранжиан :)

 
 
 
 Re: Человек на платформе
Сообщение29.10.2017, 05:08 
Аватара пользователя
pogulyat_vyshel в сообщении #1260077 писал(а):
Ну придумайте задачу, где переменные не отделяются по вашему мнению. Я вам по той же схеме напишу правильный лагранжиан
Дело происходит под водой, на тела действует сила трения пропорциональная скорости. Пишите.

-- 29.10.2017, 05:17 --

Да, колеса мы для простоты уберем. Тележка массы $M$ без трения скользит по дну океана, коэффициенты трения об воду тележки и человека на ней одинаковы и равны $\alpha$.

-- 29.10.2017, 05:47 --

Что бы было совсем просто, массы человека и тележки сделаем одинаковыми.

 
 
 
 Re: Человек на платформе
Сообщение29.10.2017, 05:48 
Аватара пользователя
... а человек по тележке копытами не проскальзывает.

Введем горизонтальную ось $X$; координата платформы на этой оси -- $x$, а координата человека -- $y$. Причем, как и выше $y=\phi(t)+x$, где $\phi$ -- заон движения человека относительно платформы (заданная функция -- ну захотел он остановиться -- остановился, шнурки завязал дальше пошел).
По-прежнему система с одной степенью свободы и обобщенной координатой $x$. Кин. энергия она же лагранжиан имеет вид $T=\frac{m}{2}(\dot\phi+\dot x)^2+\frac{M}{2}\dot x^2$
В системе действуют активные силы: На человека $\boldsymbol F_h=-\alpha(\dot\phi+\dot x)\boldsymbol e_x;$ и на платформу $\boldsymbol F_p=-\alpha\dot x\boldsymbol e_x$; применяя стандартные формулы, находим обобщенную силу
$Q=-\alpha\dot x-\alpha(\dot\phi+\dot x)$. Ловите:
$$\frac{d}{dt}\frac{\partial T}{\partial\dot x}-\frac{\partial T}{\partial x}=Q$$

 
 
 [ Сообщений: 110 ]  На страницу Пред.  1 ... 4, 5, 6, 7, 8  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group