Я понимаю, что можно так или иначе указать контекст, в котором эти записи будут обозначать нечто иное.
Я как раз имел в виду другое: что у многих выражений одно и то же значение. А то, что удобнее не выдумывать особенных обозначений для вещей, которые простым образом выражаются через общепризнанные, подразумевалось самим собой разумеющимся. И если минусу в обычной записи отрицательных чисел ещё можно попытаться придать особенный статус, то что будем делать с числами

,

или

? Перечислением цифр их, к примеру, не задашь, потому что иррациональные. Даже когда у числа есть каноническая запись, вопрос равнозначности нескольких разных записей никуда не девается. Он может быть простым (ясно, что

), может быть сложным, но такова математика — а вот в бытовой он в любом случае никак не проявляется, так что забейте.
Но все-таки у нас же есть возможность записать эти числа без применения таких сущностей, как операнды (плюс, минус, и т.д.).
Не операнды, а операции. В любом случае вы запишете выражение, а число — это его значение. Записать можно. Есть, например,

-ичные системы счисления с цифрами

, отрицательные из которых обозначаются надчёркиванием:

— и в которых целые числа выразимы все без всяких смен знака (например, в системе с цифрами

число с десятичной записью

будет записываться

, а 8 будет записываться

). Или можно для записи

, скажем, использовать перевёрнутые цифры

или другие знаки. Главное, что

останется общепринятой записью, потому что состоит в простых отношениях с десятичной записью — тоже ужасно распространённой — и унарным минусом. Который тоже ужасно распространён, даже если вы не знаете, что это унарная операция — вы ведь наверняка понимаете ну хоть то же определение модуля числа, где минус стоит перед произвольным числом и обозначает смену знака.

-арная операция — это просто функция, которая

элементам какого-то множества сопоставляет элемент из него же, вот и всё. Бинарная (от лат. 2) операция + на целых числах сопоставляет двум целым ещё одно, унарная (от лат. 1) операция − сопоставляет одному числу число.