2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Извлечение квадратного корня вручную
Сообщение22.10.2006, 02:24 
а как извлекать квадратный корень вручную ? помогите нужно

Спасибо.

 
 
 
 
Сообщение22.10.2006, 03:15 
можно использовать процесс Ньютона последовательных приближений:

$X(n+1) = \frac 1 2  (X(n) + A / X(n))$ , где $A$ — число из которого извлекается корень, а $X(0)$ — начальное приближение

Например, вычислим корень из 7:

$x_0 = 3$

$x_1 = \frac 1 2  (x_0 + 7/x_0) = 2.6666...$

$x_2 = \frac 1 2  (x_1 + 7/x_1) = 2.6458333...$

Получили уже со второй итерации хорошее приближение, точное значение = 2,645751...
________________
Близкая тема: «Алгоритм вычисления квадратного корня...» / GAA, 15.08.2017

 
 
 
 Re: Извлечение квадратного корня
Сообщение22.10.2006, 07:39 
Аватара пользователя
Энер писал(а):
а как извлекать квадратный корень вручную ? помогите нужно

Спасибо.

http://dxdy.ru/viewtopic.php?t=3760 - здесь photon помещал ссылку на статью из журнала "Квант" с алгоритмом "ручного" вычисления квадратного корня.[/quote]

 
 
 
 Итерационное вычисление квадратного корня
Сообщение15.08.2017, 01:06 
Аватара пользователя
Наткнулся в литературе на схему для вычисления квадратного корня
$$x_0=1,\quad x_{i+1}=\frac{x_i}{2}+\frac{2b}{x_i},\qquad \lim\limits_{i\to\infty}x_i=2\sqrt{b},$$
причем схема сходится очень быстро. На каждой итерации число верных знаков после запятой удваивается!
Для вычисления $\sqrt{2}$ с точностью 200 знаков нужно взять всего 9 итераций, с точностью 24 знаков 5 итерации, 5 верных знаков достигаются 3мя итерациями.

Есть аналогичная схема с 3кой
$$y_0=1,\quad y_{i+1}=\frac{x_i}{3}+\frac{6b}{y_i},\qquad \lim\limits_{i\to\infty}y_i=3\sqrt{b},$$
но эта схема сходится уже гораздо медленнее, при $b=1$ для вычисления 7 верных знаков необходимо взять 13 итераций.

Где можно почитать об этих схемах? На чем они основаны?

 
 
 
 Re: Итерационное вычисление квадратного корня
Сообщение15.08.2017, 02:36 
С двойкой — метод Ньютона. Много раз было на форуме, см., например, post37146.html#p37146, post31081.html#p31081.
Немного есть в книге Ильин В.А., Позняк Э.Г. Основы математического анализа. ТI, гл. 3, дополнение 2 (О скорости сходимости последовательности приближающей $\sqrt a$)

С тройкой — не знаю. (Если сходится хуже, то зачем оно надо.)

 i  12.11.2017 ветки объединены.

 
 
 [ Сообщений: 5 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group