2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 
Сообщение18.02.2006, 19:29 
Аватара пользователя
shwedka писал(а):
удалим из прямой и полупрямой по одной точке (связанных предполагаемым гоимеоморфизмом.) Прямая и полупрямая разобьются на 2 части.
У полупрямой одна из частей имеет компактное замыкание, а у прямой замыкания обеих частей некомпактны.


Если совсем по простому: полупрямая имеет точку, после удаления которой остаётся связное множество, а прямая таких точек не имеет.

 
 
 
 Re: Задача по топологии прямой
Сообщение18.02.2006, 21:51 
Аватара пользователя
Padawan писал(а):
Гомеоморфны ли множества всех рациональных чисел и неотрицательных рациональных чисел?


Гомеоморфны. Обозначим $\mathbb Q$ - множество рациональных чисел, $\mathbb Q_+$ - множество неотрицательных рациональных чисел.

1) Функция $f\colon\mathbb Q_+$\to[0;1)$, где $fx=\frac{x}{x+1}$ при $x\in \mathbb Q_+$, определяет гомеоморфизм множества $\mathbb Q_+$ на множество $\mathbb Q_1=f\mathbb Q_+$ рациональных чисел полуинтервала $[0;1)$.

2) Пусть $\alpha\in(0;1)$ - произвольное иррациональное число. Функция $g\colon\mathbb Q_1\to(\alpha;1+\alpha)$, определяемая для $x\in\mathbb Q_1$ равенством
$$gx=\begin{cases}x+1\text{ при }x<\alpha\text{,}\\x\text{ при }x>\alpha\text{,}\end{cases}$$
задаёт гомеоморфизм множества $\mathbb Q_1$ на множество $\mathbb Q_2=g\mathbb Q_1$.

3) Теперь мы имеем два счётных линейно упорядоченных множества $\mathbb Q$ и $\mathbb Q_2$ без первого и последнего элемента и без изолированных точек. Этих свойств достаточно, чтобы построить подобие (взаимно однозначное отображение, сохраняющее порядок) $h\colon\mathbb Q_2\to\mathbb Q$. Поскольку топологии на $\mathbb Q$ и $\mathbb Q_2$ определяются интервалами, подобие будет гомеоморфизмом.

Подробное построение подобия немного длинно. В книге [1] (Глава IV, § 3, теорема 2) рассуждение занимает две страницы. Правда, построение ведётся без аксиомы выбора, а если её использовать, то можно и покороче.

По поводу продолжения отображения. Если $X$ и $Y$ - полные метрические пространства, $A\subseteq X$ - всюду плотное подмножество, $f\colon A\to Y$ - непрерывное отображение, то существует его непрерывное продолжение на множество $B$ типа $G_{\delta}$ (это множество, которое можно представить как пересечение счётного семейства открытых подмножеств пространства $X$, содержащих $A$). Где посмотреть доказательство, не знаю, но идеи можно почерпнуть здесь: http://dxdy.ru/viewtopic.php?t=337.

[1] К.Куратовский, А.Мостовский, Теория множеств, "Мир", Москва, 1970.

 
 
 
 
Сообщение19.02.2006, 16:47 
Аватара пользователя
Someone писал(а):
Функция $g$ ... задаёт гомеоморфизм ...

Это не совсем так. Отображение $g^{-1}$ не является непрерывным в точке $1$: $g^{-1}(1-\frac{1}{n})=1-\frac{1}{n}\not\to 0 = g^{-1}(1)$.

Вместе с тем, небольшая модификация предложенных Someone идей, позволяет установить, что множества $\mathbb Q_{[0,1)}=\mathbb Q\cap[0,1)$ и $\mathbb Q_{(-1,1)}=\mathbb Q\cap(-1,1)$ (а значит $\mathbb Q$ и $\mathbb Q\cap [0,\infty)$) гомеоморфны, как метрические пространства с обычной метрикой на прямой.

Для доказательства возьмем три последовательности иррациональных чисел $\{\alpha_i\}$, $\{\beta_i\}$ и $\{\gamma_i\}$ такие, что:

$$
0<\ldots < \alpha_3 < \alpha_2 <\alpha_1 < 1,
$$

$$
0<\ldots < \beta_3 < \beta_2 <\beta_1 < 1,
$$

$$
-1< \gamma_1 < \gamma_2 <\gamma_3 <\ldots < 0.
$$

Как показано на приведенном ниже рисунке, эти последовательности разбивают $\mathbb Q_{[0,1)}$ и $\mathbb Q_{(-1,1)}$ на счетное число прмежутков.

Изображение

Здесь, например, $I_1=\mathbb Q\cap(\alpha_1,1)$, $J_1=\mathbb Q\cap(\alpha_2,\alpha_1)$ и $J'_3=\mathbb Q\cap(\gamma_2,\gamma_3)$.


Как отмечал Someone, существуют гомеоморфизмы (являющиеся подобиями) $f_s\colon I_s\to I'_s$ и $g_t\colon J_t\to J'_t$, $s,t\in\mathbb N$.

Отображение $h\colon\mathbb Q_{[0,1)}\to\mathbb Q_{(-1,1)}$, определяемое соотношением
$$
h(x) =\left\{
\begin{array}{l}
0\mbox{ при } x=0,\\
f_s(x)\mbox{ при } x\in I_s,\\
g_t(x)\mbox{ при } x\in J_t,
\end{array}
\right. 
$$
является гомеоморфизмом.

 
 
 
 
Сообщение19.02.2006, 16:57 
Аватара пользователя
lofar писал(а):
Someone писал(а):
Функция $g$ ... задаёт гомеоморфизм ...

Это не совсем так. Отображение $g^{-1}$ не является непрерывным в точке $1$: $g^{-1}(1-\frac{1}{n})=1-\frac{1}{n}\not\to 0 = g^{-1}(1)$.


Да, Вы правы. Хотел как проще, и просмотрел этот момент.

 
 
 
 
Сообщение19.02.2006, 17:25 
Аватара пользователя
lofar писал(а):
Для доказательства возьмем три последовательности иррациональных чисел $\{\alpha_i\}$, $\{\beta_i\}$ и $\{\gamma_i\}$ такие, что:

$$0<\ldots < \alpha_3 < \alpha_2 <\alpha_1 < 1,$$

$$0<\ldots < \beta_3 < \beta_2 <\beta_1 < 1,$$

$$-1< \gamma_1 < \gamma_2 <\gamma_3 <\ldots < 0.$$


Необходимое уточнение: $\lim\limits_{i\to\infty}\alpha_i=\lim\limits_{i\to\infty}\beta_i=\lim\limits_{i\to\infty}\gamma_i=0$.

lofar писал(а):
Здесь, например, $I_1=\mathbb Q\cap(\alpha_1,1)$, $J_1=\mathbb Q\cap(\alpha_2,\alpha_1)$ и $J'_3=\mathbb Q\cap(\gamma_2,\gamma_3)$.


И $I'_2=\mathbb Q\cap(\beta_2,\beta_1)$. А то непонятно, куда $\{\beta_i\}$ девать.

 
 
 
 
Сообщение20.02.2006, 09:06 
А вот такое доказательство пройдёт?
Рассмотрим топологию индуцированную обычной топологией прямой на её подмножество рациональных точек, тогда
1. очевидно,что любые два интервала гомеоморфны и гомеоморфны открытым лучам
2. каждый интервал будет одновременно открытым и замкнутым множеством, как пересечение с открытым интервалом, либо как пересечение с отрезком с иррациональными концами соответственно.
3.в рациональной прямой дополнением до точки является объединение двух открытых лучей, которые по пункту 2 будут кроме, как открытыми ещё и замкнутыми множествами, а значит точка будет открытым множеством.
4. тогда полученная топология является дискретной
5. в силу пункта 4 любая биекция между Q и Q+ будет гомеоморфизмом.

Верны ли первые два пункта?

 
 
 
 
Сообщение20.02.2006, 09:59 
По пункту 2: рассмотрим интервал $(0,1)\cap \mathbb Q$. Как его представить в виде отрезка с иррациональными концами?
По пункту 1: какой гомеоморфизм переводит все рациональные точки интервала (0,1) в рациональные точки интервала $(\sqrt 2,\sqrt 3)$?

 
 
 
 
Сообщение20.02.2006, 14:13 
Аватара пользователя
Trueman писал(а):
А вот такое доказательство пройдёт?
Рассмотрим топологию индуцированную обычной топологией прямой на её подмножество рациональных точек, тогда
1. очевидно,что любые два интервала гомеоморфны и гомеоморфны открытым лучам
2. каждый интервал будет одновременно открытым и замкнутым множеством, как пересечение с открытым интервалом, либо как пересечение с отрезком с иррациональными концами соответственно.
3.в рациональной прямой дополнением до точки является объединение двух открытых лучей, которые по пункту 2 будут кроме, как открытыми ещё и замкнутыми множествами, а значит точка будет открытым множеством.
4. тогда полученная топология является дискретной
5. в силу пункта 4 любая биекция между Q и Q+ будет гомеоморфизмом.

Верны ли первые два пункта?


Пункт 1 верен, но доказательство очень далеко от слова "очевидно".
Пункт 2 неверен. Например, интервал $\mathbb Q\cap(0,1)$ не является замкнутым в $\mathbb Q$ - см. в http://dxdy.ru/viewtopic.php?p=10998#10998 объяснение, почему отображение $g^{-1}$ не является непрерывным.
Все последующие пункты, естественно, неверны.

 
 
 
 
Сообщение21.02.2006, 09:14 
Someone писал(а):
Trueman писал(а):
А вот такое доказательство пройдёт?
Рассмотрим топологию индуцированную обычной топологией прямой на её подмножество рациональных точек, тогда
1. очевидно,что любые два интервала гомеоморфны и гомеоморфны открытым лучам
2. каждый интервал будет одновременно открытым и замкнутым множеством, как пересечение с открытым интервалом, либо как пересечение с отрезком с иррациональными концами соответственно.
3.в рациональной прямой дополнением до точки является объединение двух открытых лучей, которые по пункту 2 будут кроме, как открытыми ещё и замкнутыми множествами, а значит точка будет открытым множеством.
4. тогда полученная топология является дискретной
5. в силу пункта 4 любая биекция между Q и Q+ будет гомеоморфизмом.

Верны ли первые два пункта?


Пункт 1 верен, но доказательство очень далеко от слова "очевидно".
Пункт 2 неверен. Например, интервал $\mathbb Q\cap(0,1)$ не является замкнутым в $\mathbb Q$ - см. в http://dxdy.ru/viewtopic.php?p=10998#10998 объяснение, почему отображение $g^{-1}$ не является непрерывным.
Все последующие пункты, естественно, неверны.


Если пункт один верен, то тогда так как есть интервалы являющиеся замкнутыми, то тогда все интервалы можно считать замкнутыми или нет?

 
 
 
 
Сообщение21.02.2006, 15:09 
Аватара пользователя
Trueman писал(а):
Someone писал(а):
Пункт 2 неверен. Например, интервал $\mathbb Q\cap(0,1)$ не является замкнутым в $\mathbb Q$ - см. в http://dxdy.ru/viewtopic.php?p=10998#10998 объяснение, почему отображение $g^{-1}$ не является непрерывным.


Если пункт один верен, то тогда так как есть интервалы являющиеся замкнутыми, то тогда все интервалы можно считать замкнутыми или нет?


Там же написано: "интервал $\mathbb Q\cap(0,1)$ не является замкнутым в $\mathbb Q$".

 
 
 
 Re: Задача по топологии прямой
Сообщение06.03.2006, 18:33 
Padawan писал(а):
1.Доказать, что множества всех действительных чисел и неотрицательных действительных чисел не гомеоморфны.


Это локально компактные пространства. У них не гомеомрфны одноточечные компактификации.

Padawan писал(а):
2.Гомеоморфны ли множества всех рациональных чисел и неотрицательных рациональных чисел?


Гомеоморфны. Любое метризуемое счетное пространство без изолированных точек гомеоморфно рациональным числам.

 
 
 [ Сообщений: 26 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group