2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Задача на сползание тела с полусферы
Сообщение01.06.2017, 06:15 


23/01/07
3497
Новосибирск
Orkimed в сообщении #1220534 писал(а):
Вся проблема в том, что если подставить высоту из второй системы в первую, получается белиберда.

У Вас в первой системе и во второй $h$ разные. Если присвоить им индексы, то $h_2=2R-h_1$.

-- 01 июн 2017 10:34 --

Кстати, в первой системе Вы вопреки заявленному:
Orkimed в сообщении #1220497 писал(а):
Если $h$ отсчитывать от поверхности Земли

считаете от горизонта центра шара. Тогда $h_2=R-h_1$.

 Профиль  
                  
 
 Re: Задача на сползание тела с полусферы
Сообщение01.06.2017, 06:58 
Заслуженный участник


28/12/12
7931
Батороев в сообщении #1220776 писал(а):
У Вас в первой системе и во второй $h$ разные. Если присвоить им индексы, то $h_2=2R-h_1$.

Вроде, $h_2=R-h_1$.

 Профиль  
                  
 
 Re: Задача на сползание тела с полусферы
Сообщение01.06.2017, 10:40 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
Кстати, попутно при обсуждении этой вполне тривиальной задачи фактически родилась чуть более интересная задача.
На олимпиадную не тянет, но все же.
Пусть у нас тело изначально отстояло от верхушки сферы на полярный угол $\alpha_0$, при этом имея начальную азимутальную (горизонтальную) скорость $V_0$.
Определить полярный угол отрыва $\alpha$

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 18 ]  На страницу Пред.  1, 2

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Someone


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group