Думаю, если в задаче будут использоваться аффинные преобразования, не являющиеся изометриями, комплексные числа помогут не очень — их придётся «разбирать на части», чтобы выразить нужное. Насчёт же других вещей можно провести параллель с кватернионами — произведение (чисто векторных) кватернионов
исторически породило отдельные скалярное и векторное произведение трёхмерных векторов, являющиеся его компонентами. Произведение комплексных чисел
тоже имеет компонентами скалярное и т. н. псевдоскалярное произведение (аналогичное векторному в трёхмерии) соответствующих векторов. Так что с помощью этих двух можно выразить комплексное умножение, когда оно нужно, если не хочется ассоциировать свои векторы с комплексными числами (
, где
обозначает псевдоскалярное произведение, в координатах (в правом базисе)
,
— скалярное и не обозначаемая операция — комплексное). В простых случаях значительной разницы не должно быть.
(Отступление)
Если подходить к делу совсем последовательно, можно пустить в ход всю алгебру Клиффорда
(псевдо)евклидова пространства
целиком, существующую для таких пространств любой размерности (однозначно задаётся квадратичной формой). Как комплексные числа, так и кватернионы традиционно соответствуют двум её разным подпространствам: «просто векторы» — исходному
, а «поворачивающие штуки», с которыми связано умножение — подалгебре элементов чётной степени
. Для двумерного и трёхмерного
последняя изоморфна соответственно
как алгебрам над
. Сама
имеет размерность
, и на некоторых элементах можно определить элементарные функции типа экспоненты или логарифма, и последние удобны для манипуляции ортогональными преобразованиями, и не обязательно глубоко знать теорию этих алгебр, чтобы пользоваться всем этим для простой геометрии (как не обязательно знать, скажем, ТФКП, чтобы пользоваться комплексными числами для двумерных задач). Правда, литературу школьного уровня с необходимым минимумом посоветовать не могу.