Появились результаты. Один умный человек (J. K. Andersen) нашел вектор из 34 элементов:
(3, 5, 11, 7, 41, 19, 23, 61, 29, 151, 137, 79, 1013, 14347, 43151, 7873,
82469, 444187, 63680783, 80158627, 531845381, 13726723, 2948038229,
341461831, 5391683657, 4759989589, 45033191681, 3342118271593,
57517957292507, 25358009530039, 2584135512217541, 616856808553033,
21225241347141287, 10855325323825603)
Метод простой. Начинаем с 3 и наращиваем простые числа справа. Добавляем только которые дают все простые суммы.
There are about 3*10^14 primes up to 10855325323825603. I wonder how it is possible to check all these primes within a reasonable time.
If you want a sequence which is monotonically increasing you get
(3, 5, 11, 13, 29, 31, 47, 61, 71, 409, 2819, 4261, 113819, 124633, 236507,
250693, 501779, 886609, 29089889, 57721663, 157320827, 465327091,
812828249, 1530361321, ...), but already for the 25. element Mathematica did not find a solution within 1 hour. My intuition says that this sequence continues indefinite but of course this seems impossible to prove.